Capillarity - Permeability - Capillary Pressures - Their Measurement Using Mercury and the Calculation of Permeability Therefrom

The American Institute of Mining, Metallurgical, and Petroleum Engineers
W. R. Purcell
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
10
File Size:
719 KB
Publication Date:
Jan 1, 1949

Abstract

An apparatus is described whereby capillary pressure curves for porous media may be determined by a technique that involves forcing mercury under pressure into the evacuated pores of solids. The data so obtained are compared with capillary pressure curves determined by the porous diaphragm method, and the advantages of the mercury injection method are stated. Based upon a simplified working hypothesis, an equation is derived to show the relationship of the permeability of a porous medium to its porosity and capillary pressure curve, and experimental data are presented to support its validity. A procedure is outlined whereby an estimate of the permeability of drill cuttings may be made with sufficient acuracy to meet most engineering requirements. INTRODUCTION The nature of capillary pressures and the role they play in reservoir behavior have been lucidly discussed by Lev-rett', Hassler, Brunner, and Deah12, and others. As a result of these publications the value of determining capillary pressure curves for cores has come to be generally recognized within the oil industry. While considerable attention has been directed toward the subject in an effort to provide a reliable method of estimating percentages of connate water, it has been recognized that capillary pressure data may prove of value in other equally important applications. This paper describes a method and procedure for determining capillary pressure curves for porous media wherein mercury is forced under pressure into the evacuated pores of the solids. The pressure-volume relationships ob- tained are reasonably similar to capillary pressure curves determined by the generally accepted porous diaphragm method. The advantages of the method lie in the rapidity with which the experimental data can be obtained and in the fact that small, irregularly shaped samples, e.g., drill cuttings, can be handled in the same manner as larger pieces of regular shape such as cores or permeability plugs. Based upon a simplified working hypothesis, a theoretical equation will be derived which relates the capillary pressure curve to the porosity and permeability of a porous solid, and experimental data will be presented to support its validity. This relationship aplied to capillary pressure data obtained for drill cuttings by the procedure described provides a means for predicting the permeability of drill cuttings. METHODS FOR DETERMINING CAPILLARY PRESSURES Several techniques have so far been employed in determining capillary pressure curves and these fall into two principal categories: (1) Liquid is removed from, or imbibed by, the core through the medium of a high displacement pressure porous diaphragm (2) Liquid is removed from the core which is subjected to high centrifugal forces in a centrifuge4,'. There are? however, certain limitations inherent in both methods. The greatest capillary pressure which can be observed by method (I), above, is determined by the maximum displacement pressure procurable in a permeable diaphragm which at the present time appears to be less than 100 psi. An even more serious limitation of the diaphragm method is imposed hy the fact that several days may be required to reach saturation equilibrium at a given pressure; hence, the time re- quired to obtain a well-defined curve may be measured in terms of weeks. Furthermore, to date, no suitable technique for handling relatively small, irregularly shaped pieces of rock, such as drill cuttings, has been reported and, therefore, measurements must be made, in general, on cores, or portions thereof. The centrifuge method offers the distinct advantage over the porous diaphragm method of arriving at saturation equilibrium in a relatively short time by virtue of the elimination of the transfer medium for the liquid. The calculation of capillary pressures from centrifuge speeds is somewhat tediousa, however, and the equipment required is fairly elaborate. While there exists the possibility that this method might be adaptable to the determination of the capillary pressures of cuttings, this particular ramification has not been investigated, as far as is known. In view of the limitations of the two principal methods for determining capillary pressures, the apparatus described in the following sections has been devised in order that difficulties previously encountered might be circumvented. MERCURY INJECTION METHOD FOR DETERMINING CAPILLARY PRESSURES Theory The methods described above for determining capillary pressures are characterized by the fact that one of the fluids present within the pore spaces of the solid is a liquid which "wets" the solid, i.e., the contact angle which the liquid forms against the solid is less than 90" as measured through that phase. For these "wetting" liquids the action of surface forces is such that the fluid spontaneously fills the voids within the solid. These forces likewise oppose the withdrawal of the fluid from the pores of the solid.
Citation

APA: W. R. Purcell  (1949)  Capillarity - Permeability - Capillary Pressures - Their Measurement Using Mercury and the Calculation of Permeability Therefrom

MLA: W. R. Purcell Capillarity - Permeability - Capillary Pressures - Their Measurement Using Mercury and the Calculation of Permeability Therefrom. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1949.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account