Capillarity – Permeability - Relative Permeability Calculations from Pore Size Distribution Data

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 8
- File Size:
- 498 KB
- Publication Date:
- Jan 1, 1953
Abstract
Formulas for calculating relative permeability from pore size distribution data are derived from basic laws of fluid flow ill porous media. The tortuosity factors that appear in the equation5 are described in. terms of the physical properties of tile medium and the saturations of the contained fluids. Procedures for calculating and methods for measuring the tortuosity factors are discussed. Values of relative permeability calculated by the formulas art: compared with results obtained by experimental measurements I INTRODUCTION Recently, several investigators have derived relative permeability equations from Darey's and Poisenille's Laws in which some, physical factor or factors describing the porous system appear. The factor that has caused the greatest amount of comment, and which is probably least understood, is the tortuosity of the fluid {lath ill the porous sample. Values of the tortuosity factors appearing in the equations range from a constant for all condition- of the fluid flow system to an inverse function of the pore radii. It is the purpose of this paper to compare wine experi~i~cntslly determined relative permeability curves with those calculated by a method which utilized capillary pressure infortmation. The capillary pressure data were obtained prefer.. ably from pore size distribution information as determined by mercury injection but. in some cases, in the absence of suitable mercury injection information. data were taken from measurements made by the porous semi-permeable diaphragm method. The physical significance of certain tortuosity concepts is inferred and the determinations of the tortuosity factors from pore size distribution data and by electrical measurements are discussed. THEORETICAL BACKGROUND In previously reported studies on pore size distribution in petroleum reservoir rocks. by the author and co-workers ail equation was derived relating specific permeability. k, to pore entry radii, R, porosity. . tortuosity factor. .,, and incremental pore volume. V. The equation is where being the "effective" length of the flow path in the porous sample. and L the length of the porous sample., The constant. 0.126. is a units conversion factor. (This definition of tortuosity factor X, = L L does not conform to all such definitions found in the literature. Fly similarity, in a two-phase system. the effective permeability of the wetting-phase.
Citation
APA:
(1953) Capillarity – Permeability - Relative Permeability Calculations from Pore Size Distribution DataMLA: Capillarity – Permeability - Relative Permeability Calculations from Pore Size Distribution Data. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1953.