Coal - An Investigation of the Abrasiveness of Coal and Its Associated Impurities

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 7
- File Size:
- 635 KB
- Publication Date:
- Jan 1, 1952
Abstract
COAL mine operators recognize coal as an abrasive material, because the wear of drilling, cutting, and conveying equipment is reflected as a cost item for replacement of parts. Similarly, industrial consumers of coal experience abrasive wear on all coal-handling equipment. Operators of pulverized fuel plants are doubtless most keenly aware of the abrasiveness of coal, because under the high contact pressures developed between coal and metal in pulverizers, abrasive wear is increased many fold. Moreover, experience in operating pulverized fuel plants has demonstrated that some coals are much more abrasive than others. Hardgrove' stated that maintenance costs entailed by the wear of grinding elements is often a more important variable than the cost of the power required to pulverize different coals. Craig2 also reports that one coal may cause pulverizer parts to wear several times faster than another. It is apparent, therefore, that those concerned with pulverizing coal could profitably employ a method for estimating the abrasiveness of different coals, just as they utilize standard tests for thermal value, grindability, and ash-fusion temperature to assist in selecting the most suitable and economical coal to use in a particular plant. The objective of this investigation was to develop a test procedure that would be suitable for general use in estimating the abrasiveness of coals. However, few, if any, of the standard tests now used for evaluating the properties of coal are the product of a single investigation or the result of a single investigator's efforts. Rather, in each case, a testing procedure was devised by one investigator, used by others on a wider variety of coals, and finally refined completely as the result of the joint efforts of a number of interested people. Thus, the test procedure for estimating abrasiveness developed in the course of this work may not be refined sufficiently in its present form for general use, but it may serve as the starting point from which an acceptable test procedure can be developed. The method has been used thus far on only about a dozen coals, and there has been no opportunity to attempt a correlation between experimental results and actual plant experience. Only wider use of the procedure by other investigators and correlation with plant experience can determine to what extent the method will have to be modified to render it suitable for general application. Test Method Although the literature contains no record of an attempt to devise a method for estimating the abrasiveness of coal that could be used industrially, several investigators have tested properties of coal that are closely related to its abrasiveness. The abrasiveness of a material generally is considered to be related to its hardness, and hardness tests for coal have been employed by Heywood,' O'Neill," and Mathes. Also, the resistance of coal to abrasion, a property that presumably is related to the abrasiveness of coal, was measured by Heywooda and by Simek, Pulkrabek, and Coufalik.2 11 these investigators tested only individual pieces of coal. Since coal is a heterogeneous material having components of varying properties, tests of this type can yield results having little more than academic interest. Only a test method that utilizes a representative sample of coal can give results that are useful industrially. The abrasion tests used for various other materials have been considered for adaptation to testing the abrasiveness of coal. The tests used for metals,7-9 paving and flooring,'" and rubber," cannot be used because coal is not sufficiently abrasive.~ The present experimental work was begun before World War II and was conducted by three research fellows"'" working under a joint agreement between the University of Washington and the Bureau of Mines. After a great deal of preliminary work with a variety of apparatus and materials, a test procedure was developed which consisted of rotating a test disk 2Yz in. diam in a steel mortar containing the coal sample. The shaft carrying the test disk at the lower end and a 100-lb load on the upper end was free to move vertically. The bed of coal in the mortar was kept fluid by low-pressure air admitted through a port near the bottom of the mortar. Measurable wear on an Armco iron disk could be obtained in this test procedure, but, despite extensive efforts to eliminate them, several major disadvantages remained in this test method. First, with most coals the amount of wear on the iron disk did not exceed a few milligrams. Second, a single type of disk was not applicable for all coals. A smooth iron disk gave satisfactory results with both bituminous and sub-bituminous coals, but hardly any wear with anthracite or coke. A disk having studs or projections gave more satisfactory abrasion losses with anthracite and coke and presented no operating difficulties with free-burning bituminous and sub-bituminous coals. It could not, however, be used with caking coals because these coals formed a
Citation
APA:
(1952) Coal - An Investigation of the Abrasiveness of Coal and Its Associated ImpuritiesMLA: Coal - An Investigation of the Abrasiveness of Coal and Its Associated Impurities. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1952.