Coal - Coal Mine Bumps Can Be Eliminated

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 1
- File Size:
- 357 KB
- Publication Date:
- Jan 1, 1959
Abstract
The many factors that control bumping must be carefully studied for each coal seam where bumps occur, and specifications known to exclude bumping should be incorporated in the mining plans. This calls for complete knowledge of the seam's characteristics and its adjacent strata, and in many instances these characteristics are not revealed until the seam is actually mined. Pressure and shock bumps, the two general types, occur jointly and separately. In this discussion no differentiation will be made. Whether pressure or shock, they are treated as bumps, and both must be eliminated. Bumps in mines have occurred in several places throughout the coal fields of the world. A study of many of these occurrences indicates that geologic characteristics, development planning, and mining procedure have contributed. But more specifically, there are conditions usually associated with bumps: thickness of cover, strong strata directly on or above the seam, a tough floor or bottom not subject to heaving, mountainous terrain, stressed and steeply pitching beds, and the proximity of faults and other geologic structures. Mine planning should incorporate these known factors (not necessarily in order of importance): 1) Main panel entries should be limited to those absolutely necessary to ventilate and serve the mine. This reduces the span over which stresses may be set up that will later throw excessive pressures on barrier and chain pillars when they are being removed. 2) Barrier pillars should be as wide as practicable so that they will be strong enough to carry the loads thrown on them when final mining is being carried out. 3) Pillars should never be fully recovered on both sides of a main entry development if the barrier and chain pillars are to be removed later. The excessive pressures placed on the main chain and pillar barriers by arching of the gob areas can result in bumping when these barriers are being removed. 4) Full seam extraction is better accomplished by driving to the mine boundary and then retreat-drawing all pillars. If there are natural boundaries in the mine—such as faults, want areas, and valleys —retreat should be started there. 5) Pillars should be uniform in size and shape. The entire development of the mine should call for uniform blocks with entries driven parallel and perpendicular. Only angle break-throughs should be driven when necessary for haulage, etc. 6) For better distribution of rock stresses and reduction of carrying loads per unit area, both chain and barrier pillars should be developed with the maximum dimensions. 7) Pillars should be open-ended when recovered. If they are oblong, the short side should be mined first. Both sides of a block should not be mined simultaneously, but under no circumstance should the lifts be cut together. 8) Pillar sprags should not be left in mining. If they are not recoverable, they should be rendered incapable of carrying loads. 9) Pillar lines should be as short as practicable. (Three or four blocks are adequate). Experience has shown that rooms should be driven up and retreated immediately. The longer a room stands, the more unfavorable the mining conditions. This contributes to bumping. 10) Pillars should not be split in abutment zones (high stress areas lying close to mined out areas) and if slabbing is necessary, it should be open-ended. 11) Pillars should be recovered in a straight line. Irregular pillar lines will allow excessive pressures thrown on the jutting points. Experience has shown that the lead end of the pillar line can be slightly in advance. 12) Pillar lines should be extracted as rapidly as possible. This appears to lessen pressures on the line and render abutment zones less hazardous. 13) Extraction planning should call for large, continuous robbed out areas. Robbing out an area too narrow to get a major fall of the strata above the seam tends to throw excessive pressures on a pillar line. 14) Timbering in pillar areas should be adequate but not excessive. Too heavy timbering or cribbing is likely to retard roof falls and throw excessive weight on the pillar line. 15) Experience has shown that when pillar lines have retreated 800 to 1000 ft from the solid, bumps can occur. Because this distance may vary in different seams, impact stresses should be studied for each individual condition. In any event, extra precautions should be taken against bumps in this area. This list of controlling factors may or may not be complete. It probably is not, but it covers most of the problem's significant aspects. The question is whether or not bumping can be eliminated. The answer is that bumping can be minimized and possibly eliminated if these and other established factors are thoughtfully considered and incorporated in the mining and extraction plans. If a mine has already been developed or the pattern set so that little change can be made, then it will be necessary to adjust to the most nearly practicable system that can incorporate the known factors.
Citation
APA:
(1959) Coal - Coal Mine Bumps Can Be EliminatedMLA: Coal - Coal Mine Bumps Can Be Eliminated. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1959.