Coal - Convertol Process

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 4
- File Size:
- 940 KB
- Publication Date:
- Jan 1, 1959
Abstract
IN the last several years the coal industry has intensified its effort to solve the growing problem of cleaning and recovering fine mesh coals. On one hand these has been increasing civic pressure for cleaner streams, and on the other hand there has been increasing production of fine mesh coal, resulting directly from adoption of the modern mining methods so essential to the economy of the coal mining industry. Cleaning fine coal with the same precision possible with coarser coals is a difficult task, and for coals finer than 200 mesh it has been impractical. Furthermore, the inclusion of —200 mesh material in the final product markedly increases costs of de-watering and thermal drying, which are necessary steps if coal is to meet market requirements. Consequently these extreme fines have generally been wasted. As a result, problems have been created in many districts because there has not been enough area for adequate settling basins. Wasting of coal in the -200 mesh slimes may account for a loss in washer yield equivalent to 2.0 to 2.5 pct of the raw coal input. With rising mining costs the value of such a loss is constantly increasing and a need for a better solution to the fines problem becomes more pressing every day. From an operating viewpoint, also, continuous removal of extreme fines from the washing plant circuit permits good water clarification practice, improving significantly the overall cleaning efficiency. The obvious desirability of recovering a commercially acceptable coal from washery slimes prompted U. S. Steel Corp. to investigate the merits of the Convertol process developed in Germany." Although this process has been used commercially in Europe for some time, little if any consideration has been given to its possible adoption in the U. S. until very recently. Fundamentals of the Convertol Process: In the Convertol process, droplets of dispersed oil are brought into intimate contact with the solids suspended in the coal slurry to be treated. This contact causes oil to displace the water on the surface of the coal by preferential wetting, or phase inversion, after which the coal particles are allowed to agglomerate in a manner permitting their re- moval from the slurry by centrifugal filtration. The clay and other particles of mineral matter suspended in the slurry do not have the affinity for oil the coal particles have. Consequently the oil treatment is preferential to coal to the extent that more than 95 pct of the oil used reports with the clean coal recovered. Figs. 1 through 3 will clarify the steps involved in the process. Fig. 1 shows the suspended material in the slurry to be treated, which is a thickened product containing 40 to 45 pct solids. Oil is now injected into the slurry under vigorous agitation to produce good oil to coal contact conditions, which result in preferential oiling of the coal particles. These coal particles are then permitted to agglomerate by gentle stirring in a conditioner to form flocs, as shown in Fig. 2. At this point in the process the agglomerated oiled coal can be washed and partially dewatered on a vibrating screen, as shown in Fig. 3. Finally, the washed flocculate can be further dewatered in a high-speed screen basket centrifuge or in a solid bowl centrifuge. Commercial Application of the Convertol Process in Germany: The original Convertol process was developed by Bergwerksverband zur Verwertung von Schutzrechten der Kohlentechnik, G.m.b.H., a German research organization controlled by the Coal Operators Assn. of the Ruhr Valley. The process as reduced to commercial practice in Germany' is shown in Fig. 4. In this process a thickened slurry (40 to 45 pct solids) mixed with a predetermined percentage of oil is fed from a surge tank to the phase inversion mill. After the phase inversion step, the slurry is usually discharged directly to a highspeed screen centrifuge. From 3 to 10 pct oil is used, depending on type of oil, size consist of coal to be recovered, and operating temperature. The top size of fine coal cleaned in Germany by the Convertol process is limited by the size of the openings in the centrifuge screen basket. Any mineral matter coarser than the basket opening, which is generally 60 to 80 mesh, must remain with the oiled coal. If the coal fines have been effectively cleaned down to about 80 mesh, the cleaning performance of the process is practically unaffected by the presence of coarse coal particles. However, since recovery of coal much coarser than 80 mesh is mow economical by conventional methods, it normally becomes more costly to allow substantial percentages of this coarse coal in Convertol process feed. Where the general plant layout does not permit effective cleaning of coal sizes down to 80 mesh or lower. there is some justification for a coarser Con-
Citation
APA:
(1959) Coal - Convertol ProcessMLA: Coal - Convertol Process. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1959.