Coal - Drilling and Blasting Methods in Anthracite Open-Pit Mines

The American Institute of Mining, Metallurgical, and Petroleum Engineers
R. L. Ash R. D. Boddorff C. T. Butler W. W. Kay
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
3
File Size:
256 KB
Publication Date:
Jan 1, 1953

Abstract

DRILLING and blasting in anthracite open-pit mines is a continuous problem to contractors and explosive engineers because of the diverse conditions caused by the nature of the geological formations, the extensive mining of the portions of coal beds near the surface, and the proximity of many strip pits to populated areas. Pennsylvania anthracite occurs in four separate long and narrow fields totaling only 480 sq miles. The coal measures are rock strata and coal beds that are considerably folded and faulted. The crests of the anticlines are eroded extensively. The beds outcrop on the mountain sides and dip under the valleys. At first only the upper portions of the syn-clines could be stripped. Now stripping to increasingly greater depths is economically possible, as is indicated by the fact that the proportion of freshly mined anthracite produced by strip mining has increased from 3.7 pct of the total tonnage in 1930 to 29.6 pct in 1950. Much of the rock overlying the deeper beds now being stripped is so extensively broken that considerable difficulty is experienced in drilling satisfactory blast holes and in using explosives in such manner as to insure a uniformly broken material easily removed by the excavating machinery. Such breaking of rock strata has occurred because the bed now being stripped has been mined extensively in former years by underground methods, and tops of gangways and chambers have subsequently failed. Draglines are used to uncover coal where the overburden can be moved with little or no re-handling. These machines range in size from those having a 2 cu yd capacity bucket on a 60-ft boom to those handling a 25 cu yd bucket on a 200-ft boom. Draglines are also used to strip to the bottom of the coal basins if the depth and the distance between the crops are not too great. For this type of operation blast holes are drilled full depth to the bed. These holes are commonly 30 to 90 ft deep; however, in exceptional cases, holes may be as shallow as 12 ft or as deep as 130 ft. Drilling is normally done for blasts of 12,000 to 60,000 cu yd of overburden, 30,000 cu yd being considered an average blast if vibration is not the controlling factor. Where the stripping of wide basins or the exposure of a moderately pitching vein makes the use of draglines impractical, dipper front shovels equipped with 4 to 6 cu yd buckets load into trucks. Overburden is removed in benches of 25 to 30 ft with blast holes drilled 4 or 5 ft deeper than the planned floor of the bench. For shovels under 5 cu yd bucket capacity the volume blasted varies from 8000 to 12,000 cu yd, whereas a volume of 30,000 to 50,000 cu yd of overburden is frequently blasted at one time for the larger shovels where vibration is not an important factor. During the past decade the churn drill, generally the Model 42-T Bucyrus-Erie blast hole drill equipped for drilling 9-in. diam holes, has become the most common blast hole drilling machine. Electricity powers half the churn drills in use and is preferred on the large strippings where electric shovels are operated and the working area is concentrated. On these operations the cost of additional electricity for the drills is less than the cost of fuel to operate diesel units because of the existing large demand load of the excavating equipment. Moreover, electric motors start more easily in cold weather and generally are less expensive to maintain. Diesel driven units are employed where a higher degree of mobility is required. The average drilling speed is 8 ft per hr, although in softer rocks a rate of 15 ft per hr is attained. Where rock is hard and strata is badly broken, drill speeds may be less than 2 ft per hr. Low drilling production results under these circumstances when loose material falling from the upper portion of the drill holes causes drill stems to be jammed. Rock formations vary so greatly in the region that a 9-in. diam churn drill bit may become dull after drilling only 2 ft or may drill satisfactorily for 56 ft; however, an average of 35 ft is usual in sandstone of medium hardness. Dull bits are hoisted to flat bed trucks by the sand line of the drill and are usually sharpened in the contractor's bit shop adjacent to the job. Care is generally taken to cover the thread end of the bit with a cap. To facilitate handling of bits around the drill, a heavy thread protector having an eye top is becoming more popular than the flat-top rubber or metal cap furnished with new bits. The 9-in. diam blast holes for a 25 to 30 ft bench are normally on 18x18 ft to 20x20 ft spacings, depending on the character of the overburden, although in broken ground 15x18 ft centers may be used to obtain better breakage and a more even bottom for the bench. The patterns of holes for shots
Citation

APA: R. L. Ash R. D. Boddorff C. T. Butler W. W. Kay  (1953)  Coal - Drilling and Blasting Methods in Anthracite Open-Pit Mines

MLA: R. L. Ash R. D. Boddorff C. T. Butler W. W. Kay Coal - Drilling and Blasting Methods in Anthracite Open-Pit Mines. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1953.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account