Coal - Fine Coal Drying

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 8
- File Size:
- 597 KB
- Publication Date:
- Jan 1, 1954
Abstract
The drying of fine coal involves special techniques, which are discussed and analyzed. Types of dryers employing these techniques are described. Calculations are presented for new methods of dealing with the entrained dust that is always present in fine coal drying operations. NEW conditions, new requirements, and new methods have increased the demand for more efficient and more economical methods of drying fine coal. Dewatering of larger sizes may reduce the surface moisture to 8 or 9 pct. It is more difficult, however, to dewater sizes below 1/4 in., and some filter cakes still contain as much as 20 or 25 pct moisture. Increased freight rates and stricter consumer specifications have resulted in a demand for further reductions in moisture content. This can be obtained only by heat drying. Most modern methods of heat drying disperse or spread the mass of coal to be dried, in an atmosphere of dry hot gases. The more intimate the contact between coal particles and hot gases, the quicker and more efficient the drying operation will be. Two different techniques are generally employed, using either a fluidized condition or an entrained condition of the coal to be dried. Fluidized Condition Fluidization of a body of sand was defined and explained by Fraser and Yancey in a paper published in 1926.' This condition was artificially obtained and maintained by proper regulation of the rate of air flowing through the sand body. "The sand bath 'boils' uniformly on the surface," they write, "and feels like a fluid." The fluidization technique was also described and analyzed by Steinmetzer2 in connection with the operation of an air cleaning table. His main conclusions are as follows: "Fluidity is, for the particles involved, the possibility of motion with minimum friction. . . . Then fluidity requires the introduction of various forms of energy capable of neutralising frictions. Two solutions can be used— air and/or mechanical motions (such as the shaking motion of the carrying deck of the air table). The combination of mechanical and air energy will give the widest margins of size ratios and of bed thickness, translated in capacity per unit area of the carrying table." Richardson and Langston3 have indicated results obtained with a dryer working with a fluidized bed. They used a vertical tube type of dryer, however, without the assistance of any mechanical energy, and without any lateral motion of the fluidized bed. The capacity of such a dryer is too limited for practical applications, since the speed of the acceptable air currents is held to the speed of fall of the particles involved. Capacities as low as 182 Ib of coal per hr per sq ft of dryer area are indicated. As stated by Richardson: "A basic limitation to a fluidised bed dryer is that the velocities of the gas must be held within a definite range; with velocities of 10 ft per second, all coal minus 6 mesh in size will be entrained, and the operation is then similar to that of a Flash dryer." A fluidized bed must be virtually static. The coal particles simply kept in suspension offer a minimum resistance to the flow of gases, insuring the most favorable conditions for rapid evaporation of surface moisture. However, very wet fine coal, i.e., over 12 pct of surface moisture, will be delivered in the forms of mud balls, or as a soggy, sticky mass, almost impossible to disperse, sticking and acting as a wet blanket on the deck. Strong currents of gases and wide deck perforations will be required to punch holes in the wet mass and gradually loosen and fluidize it. The mechanics of fluidizing a bed of coal in a gas medium for the purpose of obtaining the most efficient drying condition are entirely similar when the fluid used is water and the purpose is to break up and distend a bed of coal to be cleaned so that perfect stratification according to densities will be insured. Purely mechanical energy is used in the basket-type jig, water pulsations in the piston and in the Baum-type jigs. A combination of mechanical motion and of air pulsation offers the most efficient and favorable conditions. Entrained Condition The most critical factor to be considered in the design of a dryer employing the entrained condition technique is the speed of the hot gases to be circulated in the drying column. With insufficient gas velocity, excessive amounts of the largest sizes will drop to the bottom of the dryer column without being thoroughly dried. On the other hand, high gas velocity will cause degradation, dust losses, and high power consumption. Figs. 1 and 2, reproduced from Hanot,4 show the relative importance of speed and temperature for various sizes of particles. It can be seen, for instance, that to maintain in unstable equilibrium particles of 1/4-in. size in a gas current at 500°C, a speed of 30 meters per sec, or 6000 fpm, will be required. For % -in. particles an almost prohibitive speed of 45 meters per sec, or 9000 fpm, will be necessary. In practice, maximum gas velocities of 3000 fpm are recommended; since power increases as the cube of the velocity, it can be seen that beyond certain limits such dryers would not be economical. If the particles were moving at the same speed as the hot gases they would remain in the same
Citation
APA:
(1954) Coal - Fine Coal DryingMLA: Coal - Fine Coal Drying. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1954.