Coal - Frontiers in Heat Extraction from the Combustion Gases of Coal

The American Institute of Mining, Metallurgical, and Petroleum Engineers
Elmer R. Kaiser
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
10
File Size:
856 KB
Publication Date:
Jan 1, 1955

Abstract

COMBUSTION of coal and transfer of heat from flames and gases to boiler surfaces continue to be of great interest to engineers here and abroad. Numerous investigations have been in progress to improve furnace and boiler performance and economy. The importance of better understanding of the processes and opportunities for improvement is apparent when it is remembered that heat from at least 500 million tons of coal a year the world over is being transferred to boiler water at efficiencies ranging mostly between 50 and 90 pct. Even slight gains in efficiency, economy, and labor saving become very significant when multiplied by the enormous quantity of fuel consumed. Also the competitive position of the large coal, oil, and gas industries in satisfying the fuel consumers is greatly affected by the achievements made through technical progress with each fuel. This paper is part of a continuing activity of Bituminous Coal Research, Inc., to extend the knowledge of coal utilization for steam generation and to seek promising directions for future research and development in cooperation with others. Particularly in the latter regard, numerous interviews were held during the last three years to seek the experience and advice of boiler and combustion-equipment manufacturers, electric-utility executives, and fuel engineers. A wealth of published information was also reviewed, which together with the interviews pointed to the advisability of further work on ash and sulphur control. For the present purpose a number of factors important to efficient heat liberation and recovery have been grouped as follows: 1—combustion, temperatures, and rates of heat liberation; 2—radiation, convection, and furnace and boiler configuration; 3—sponge ash, slag, and hard-bonded deposits; 4— low-temperature deposits and corrosion (cooling flue gas below dew point and air-pollution control); 5—the limitations of coal cleaning and boiler size and cost as related to fuel characteristics; 6—future possibilities and conclusions. The development of combustion apparatus for power boilers is progressing at a lively pace. There has been no letup in improvements in design of pulverized-coal-fired boilers, and there is a strong trend at present toward improving dry-bottom units. Spreader stokers with overfire jets and dust collectors as standard equipment are gaining favor. Less than 10 years in commercial use, cyclone burners are going into numerous installations here' and abroad.' Underfeed and traveling-grate stokers have long since been developed for heavy-duty operation, yet new developments in overfire jets and humidification of air blast have improved their performance. A water-cooled vibrating-grate stoker of German origin is being introduced into the United States and Canada." The primary objectives of an ideal coal combustion device are: capacity to burn the variety and sizes of coals likely to be economically available during the life of the unit; capacity to burn the coals automatically for a wide load range and rapid load fluctuations and to burn the coals completely to CO2, H2O, and SO2, which means without smoke and cinders, or carbon in the refuse; capacity to control and discharge all the ash in final granular form without ash adhesion to walls or tubes, and without flue dust; minimum furnace volume; minimum labor and maintenance; low initial and operating cost. Regardless of the method of burning, the gaseous products of coal combustion are N2, CO2, O2, H20, and SO?. By way of illustration, the coal analyses in Table I is assumed from an installation described by E. McCarthy.' When coal is burned with 20 pct excess air (theoretical air, 9.23 lb per lb of coal), the quantities of combustion gas shown in Table II are produced. In addition, the gases carry particles of fly ash, unconsumed cinders, soot particles, and small but significant amounts of vaporized oxides and sulphates of sodium, potassium, lithium, phosghorous, iron, and other metals. In recent years, germanium, one of the rare metals found in coal, has been shown to oxidize and vaporize at combustion temperatures and to be concentrated by reconden-sation at lower temperatures." Pulverized coal and cyclone flames" have peak temperatures of 3000' to 3500°F. Temperatures in fuel beds of large underfeed stokers reach maxima of 3000°F, sufficient to fuse almost any ash and to volatilize some of it. These peak temperatures are above the optimum necessary for rapid combustion, but they hasten heat transfer for ignition as well as boiler heat absorption. Furnace and gas temperatures increase with combustion air preheat. Low excess air has the same effect. Fine coal pulverization and highly turbulent combustion shorten the distance for fuel burnout, increase flame temperature, and speed up heat transfer. Rates of combustion of pulverized coal exceeding 200,000 Btu per cu ft per hr have been demonstrated in atmospheric gas-turbine combusters,
Citation

APA: Elmer R. Kaiser  (1955)  Coal - Frontiers in Heat Extraction from the Combustion Gases of Coal

MLA: Elmer R. Kaiser Coal - Frontiers in Heat Extraction from the Combustion Gases of Coal. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1955.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account