Construction Uses - Stone, Conservation

- Organization:
- Society for Mining, Metallurgy & Exploration
- Pages:
- 8
- File Size:
- 598 KB
- Publication Date:
- Jan 1, 1994
Abstract
The rapid decay and disfiguring of stone monuments in urban and desert rural areas has challenged conservators to protect stone surfaces from premature decay. They attempt to halt the natural process of stone decay and possibly to restore the original strength lost mostly by chemical weathering and the loss of binding cement. Ageneral solution is not possible because the physical and chemical characteristics must be considered for different stone types. The failures of stone preservation and restoration are greater in number than the cures. The need for repair of stone decay goes back to evidence of Roman replacement of decaying stone. The presence of excess water in buildings has long been recognized. Moisture tends to enter masonry from air in humid climates, a most important but often underrated factor (Fig. 1) suggesting that sealing should be the answer. Undesirable staining and efflorescence result in accelerated scaling. Today, the great variety of chemicals available to the modem conservator for sealing. consolidating, or hardening stone fall into two very different categories: surface sealers and penetrating stone consolidants, or a combination of both. SEALERS Sealers develop a tight, impervious skin which prevents access of moisture. Surface sealing has saved monuments from decay by eliminating the access of atmospheric humidity. Pressure tends to develop behind the stone surface by moisture escape. Efflorescence, crystal growth action, and freezing can cause considerable spalling (Anderegg, 1949). Flaking results when moisture is trapped behind the sealed surface. Yellowing and blotchiness are also frequently observed. The following sealants are in common use today: linseed oil, paraffin, silicone, urethane, acrylate, and animal blood on stone and adobe. Extensive cracking and yellowing has resulted soon after application. In the past many such treatments have created more problems than cures: 1. Linseed oil and paraffin have been in use for centuries. Embrittlement and yellowing occur rapidly because these are readily attacked by solar ultraviolet radiation. 2. Animal blood as paint has temporarily waterproofed adobe mud and stone masonry. The origin of blood paint has a religious background rooted in the Phoenician and Hebrew cultures. Instant water soluble dried blood can substitute for fresh blood. Winkler (1956) described the history and technique of the use of blood. 3. Silicones have proven very effective and are long lasting. In contrast, acrylates, urethane, and styrene are generally rapidly attacked by UV radiation (Clark et al., 1975). Sealing of Different Rock Types Granitic rocks have a natural porosity traced to 4.5% contraction of quartz, during cooling of the parent magma, compared with only 2% contraction of all other minerals; protection against the hygric forces may require waterproofing of granite in some in- stances. The Egyptian granite obelisk in London is an example. Soon after its relocation from Egypt to London, Cleopatra's Needle was treated, in 1879, with a mixture of Damar resin and wax dissolved in clear petroleum spirit; surface scaling became evident after half a year of exposure to the humid London atmosphere. The treatment of the ancient granite monument from Egypt has denied access of high relative humidity (RH) in London to the trapped salts inherited from the Egyptian desert and has protected the monument from decay (Burgess and Schaffer, 1952). The sister obelisk set up in Central Park, New York City, has fared less favorably because similar treatment was done too late, only after the salts hydrated and hundreds of kilograms of scalings disfigured the obelisk surface (Winkler, 1980). Surface coating of other common stones may be needed. Crystalline marble absorbs moisture from high RH atmospheres: dilation may ensue when curtain panels bow as the moisture starts to expand during daily heating-cooling cycles. A good sealer may prevent the moisture influx provided that no moisture can enter from the inside of the building. Limestones, dolomites and all carbonate rocks are subject to dissolution attack by rainwater, especially in areas where acid rain prevails (Fig. 2). The interaction of sulfates in the atmosphere with the stone can be halted by waterproofing to avoid the formation of soft and more soluble gypsum. The stone surface attack can be diminished if nearly insoluble Ca-sulfite crusts can form, instead of Ca-sulfate. Replacement of fluorite or barium compounds at the stone surface acts as a hardener, rather than a sealant. Sandstones have generally high porosity and rapid water travel can occur along unexpected routes and from any direction. Any surface sealing may do more damage by scaling and bursting than if the stone is left without treatment. Sealing of sandstones is therefore not advised at any time. Testing the efficiency of sealants: Several authors discuss waterproofing materials, silicones, urethanes, acrylates and stearates, as to their water absorption, spreading rates of water on the treated surface, water vapor transmission, resistance to efflorescence, and general appearance (Clark et al., 1975). De Castro (1983) measured the angle of contact of a microdrop (0.004 cm3) on a stone surface as characteristic of the wettability. Laboratory tests and limited field performance are described by Heiman (1981). The crest of a Gothic sandstone arch, which was sealed with silicone,
Citation
APA:
(1994) Construction Uses - Stone, ConservationMLA: Construction Uses - Stone, Conservation. Society for Mining, Metallurgy & Exploration, 1994.