Control Of Radon Daughter Concentration In Mine Atmospheres With The Use Of Radon Diffusion Barriers

- Organization:
- Society for Mining, Metallurgy & Exploration
- Pages:
- 4
- File Size:
- 203 KB
- Publication Date:
- Jan 1, 1981
Abstract
RADON SOURCES AND CONTROL MEASURES IN THE MINING ENVIRONMENT Most of the contamination of the mine atmosphere by radon 222 is due to radon emanating from solid or fractured ore surfaces of walls, roof and floor. Also radon gas emanates from broken ore either from storage in backfilled mined-out areas as applied in e.g. shrinkage stopping methods or from ore spillage along intake airways mainly due to the use of trackless haulage. To a lesser extent water itself can represent an additional source of radon, which emanates into air from open drainage ditches or seepages along intake airways. The contribution from water can be controlled effectively by isolating the water from the primary intake air system, e.g. by diverting the water through pipes and/or sealing of seepages by grouting. However, control of radon emanating from rock surfaces creates a major technical problem with significant impact on the economic aspects of mining operations, if adequate radiological conditions must be maintained. Basically this can be achieved by suppressing the emanation process itself, confining already emanated radon or by removal of radon from the mine atmosphere. Extensive research has been carried out on the rate of radon emanation as a function of barometric pressure changes (Pohl-Rüling and Pohl, 1969). It could be shown that the radon supply consists of a permanent and variable component. The former results from the surface of the rock and depends mainly on the emanating fraction of its radium 226 content; the latter originates from within the rocks and is a function of the suction effect of decreasing barometric pressure, rock porosity and fissures. The practical application of this barometric pump effect for depressing the rate of radon emanation, e.g. by pressurizing the mine atmosphere, is limited due to high costs for providing a sink for absorption of radon and air as well as lack of permeability in most uranium ore bodies (Schroeder et al., 1966). Mine air cleaning by removal of radon can be achieved with the use of cryogenic methods, chemical removal, adsorption into charcoal beds, use of a gas centrifuge or general ventilation techniques. Technical problems have so far prevented the application of any of these methods other than ventilation. It is common practice to use the age-of-air concept, i.e. fresh air is delivered to the worker as directly as possible and removed quickly afterwards thereby maintaining the air "young". Engineering principles for quantity distribution of air through underground working areas are straightforward for general mining situations where radon constitutes an environmental contamination problem. However, in cases of high uranium ore content this concept may result in high costs with regard to installation and energy requirements for effecting both frequent air changes as well as sufficient heating of the air in cold seasons. Taking into account that the investment in ventilation systems is a major cofactor for the overall ore production costs this can be a limiting and decisive component in the assessment of the economic feasibility of specific mining operations and mineral reserves in general. Effective control of the radon flux from the rock surface prevents the initial contamination of the mine air with radon directly at the source. A radon diffusion barrier for practical application in mining requirements should fulfill the following requirements: - reduction of radon emanation rate by at least an order of magnitude - high mechanical strength - ease of sealant application onto surface to be coated - water resistant - low fire hazard - resistant to temperature changes encountered in mines - high cost efficiency in relation to exposure reduction achieved (direct and indirect costs) - low degree of maintenance. In the past several materials have been tested as sealants for controlling the emanation of radon from surfaces of rock and building materials. Epoxy paints reduce radon emanation rate only by a factor of 2 to 6 (Auxier et al., 1974; Eichholz et al., 1980; Keith Consulting Engineers, 1980). Although it is possible to prevent the escape of more than 99 % of the radon to the environment with gel seals over 80 mm thick (Bedrosian et al., 1974), practical applicability is very limited. Multilayer coatings of epoxy resins with various additives require meticulous preparation and flawless application of seamless four-layer coatings in four days to impede radon diffusion (Culot et al., 1976), otherwise results from this method have not been totally satisfactory (Leung, 1978). Aluminium foil laminated with polyethylene and paper on each side is under test as radon barrier but results are not available yet (Ericson, 1980). However, this method has the inherent disadvantage that possible malfunctioning electrical installations can cause fire or electrical shock through the sealant. Polyurethane foam coatings have been used on stoppings as very effective sealants. It does, however, represent a potential danger of spontaneous ignition and it is expensive (Rock, 1975). Thus, there is still need for a material which has similar properties as outlined above. In the following results are reported from investigations on the suitability of various materials as radon diffusion barriers.
Citation
APA:
(1981) Control Of Radon Daughter Concentration In Mine Atmospheres With The Use Of Radon Diffusion BarriersMLA: Control Of Radon Daughter Concentration In Mine Atmospheres With The Use Of Radon Diffusion Barriers. Society for Mining, Metallurgy & Exploration, 1981.