Current Concepts in Coal ExportTerminal Design

Society for Mining, Metallurgy & Exploration
R. W. Carn D. Vincent
Organization:
Society for Mining, Metallurgy & Exploration
Pages:
5
File Size:
581 KB
Publication Date:
Jan 6, 1983

Abstract

During the next 15 years, US coal production is expected to double, with the increased production evenly divided between the East and the West. Along with greater production, coal export markets should increase dramatically from East, West, and Gulf Coast ports. The annual overseas export capacity of US coal-loading terminals is expected to rise from 147.1 Mt (162.1 million st) in 1981 to a minimum of 278.1 Mt (306.6 million st) in 1985, according to the US Maritime Administration. Increased coal production and use will lead to more development of import and export terminals, a vital link in the coal transportation chain. With continually escalating capital costs and the competitive markets that the terminals will serve, a well designed and efficient terminal is necessary. This article begins a two-part series that presents concepts presently used in coal export terminal design. Part I looks at site selection factors and equipment needs, while Part II will examine environmental considerations in building a terminal as well as typical capital and operating costs. The world is nearing the end of the oil era. In a few years oil will not be available to sustain the growth rate and increasing standard of living we have known in our lifetime. The big question is what energy era are we moving into? With the decline of readily available oil reserves and rapidly increasing prices, many countries are trying to switch to alternate energy forms. While intensive efforts to find new oil reserves continue, alternate energy sources such as natural gas, coal, synthetic fuels, nuclear, hydroelectric, solar, and wind power are being developed. Recent indications are that coal is expected to bridge the energy gap over the next 25-30 years until the technology and economics of the alternate energy forms reach satisfactory levels. Use of coal for energy is receiving strong attention due to its long-term availability (200-300 years minimum), relative ease of development, and its low cost per unit of power produced. By the year 2000, it is expected that 25% of world energy supply will be met by direct coal combustion and possibly another 5-10% by synthetic fuel from coal. Coal's expanding share in the world energy market, along with an increase in coking coal requirements, will result in a large increase in the world's seaborne coal trade. Recent statistics and projections for the future are shown in Table 1. This phenomenal development rate includes increases in both coking and thermal coal requirements. Because of the rapid increase of seaborne coal trade during the last 10 years and the even greater projected increase of trade to 2000, various sectors of the coal industry are faced with enormous technical challenges and huge investments in equipment, land, transportation systems, and port facilities. Very large bulk terminals are under development throughout the world. Latest surveys indicate that there are about 30 new coal export and import terminals under consideration and at least 30 existing terminals have expansion programs planned or underway. With the high cost of borrowed capital and rapid inflation rates there is great emphasis on new planning and design techniques to minimize capital and operating costs of coal transportation systems. Terminals A total coal supply system can be considered to consist of one or more mines; a train, barge, truck, or other haulage system; an export terminal; a fleet of bulk carriers; a receiving terminal; and possibly, local inland distribution networks that include barges and railways. Terminals, though only a small link in the total transportation system, play a key role in overall system efficiency. At ports or inland distribution centers, terminals act as transportation links bringing trains, ships, barges, or trucks together for cargo transfer and temporary storage. A well-designed terminal can provide maximum independence between two modes of transportation and optimum freedom for intermodal interference. A terminal acts as a buffer between the two transportation modes by providing sufficient storage capacity so a ship need not wait for its cargo on, for example, a train-by-train basis, but can load immediately from the ready stock. Similarly, a train need not wait for a ship to unload its contents but can dump immediately into storage. A terminal also can be used to properly mix various types of coal to satisfy a buyer's requirements. Consider the relative value of various production and transport segments for a typical steam coal
Citation

APA: R. W. Carn D. Vincent  (1983)  Current Concepts in Coal ExportTerminal Design

MLA: R. W. Carn D. Vincent Current Concepts in Coal ExportTerminal Design. Society for Mining, Metallurgy & Exploration, 1983.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account