Diamonds, Industrial

Society for Mining, Metallurgy & Exploration
K. Reckling R. B. Hoy Stanley J. LeFond Derek G. Fullerton Unni H. Rowell
Organization:
Society for Mining, Metallurgy & Exploration
Pages:
17
File Size:
1232 KB
Publication Date:
Jan 1, 1994

Abstract

In 1989 natural industrial diamonds counted for 55% of the world's natural diamond production. Australia is currently the leading producer (35%). Zaire is the second largest producer (19%). of what is primarily industrial grade rather than gem grade. Botswana (17%) is third, with the former USSR (15%) fourth, and the Republic of South Africa (8%) fifth. Diamonds are also mined in Angola, Namibia, the Ivory Coast, the Central African Republic, Ghana, Tanzania, Guinea, and other African countries. In the Western Hemisphere, Brazil is the principal producer, with some production from Venezuela and Guyana [(Fig. 1)]. A very small output of diamonds is mined today in India, which was the first source of commercial production. In the United States, efforts at commercial diamond mining have been confined to a small area near Murfreesboro, AR. The first diamond was found in a pipe there in 1906. Small scale trial mining has not, however, proved economical. Since diamonds were first discovered more than 2,000 years ago, only about 380 t have been mined. In order to obtain 1 g (5 metric carats) of diamonds, it is necessary to remove and process approximately 25 t of rock. Recovering this small percentage involves a combination of highly developed techniques in mining and extremely sophisticated processes in diamond recovery. END USES Diamonds are used for two unrelated end uses: gem diamonds are jewels of great beauty, while industrial diamonds are essential materials of modem industry. Although imitation stones are substituted for the gem diamond, none of these matches its properties sufficiently well to offer real competition. Synthetic industrial diamonds are now of a quality and size that permit them to be substituted for natural diamonds in numerous industrial applications. For example, synthetic diamonds are available today in sizes up to 100 stones per carat (1.2 to 1.4 mm). In addition, polycrystalline synthetic diamond inserts, such as De Beers Syndite", General Electric's Compaxa and Stratapax", and Megadiamond's Megapax" have replaced natural diamonds in turning tools, mining and oil drilling bits, and dressing tool applications. Industrial Diamonds The diamond is by far the most important industrial abrasive. As recently as 50 years ago, consumption of industrial diamonds was less than that of gem diamonds, but since that time, industrial use has grown to a position of great dominance. During the six-year period 1929 to 1934, the material produced for industrial use amounted to about 74% by weight of the world's total output of diamonds. In 1989 the percentage of natural industrial diamonds mined in the world was 55%. When synthetic industrial diamonds are added to the natural industrial diamond figures, this percentage becomes 87% of total world diamond production including gems, near gems, industrial, and synthetic stones. The many uses responsible for these significant increases are dependent on the properties of the diamond, including hardness, cleavage, and parting, optical characteristics, presence of sharp points and edges, and capacity for taking and maintaining a high polish. The utilitarian role of the diamond was confined primarily to lapidary products until the industrial revolution, which created the first demand for diamond as an industrial tool. In 1777, a British inventor and instrument maker, Jesse Ramsden, used a diamond to cut a precision screw for an engine that he had invented. The first authentic description of industrial diamonds being set in a saw was recorded in 1854 by a Frenchman, Durnain. Eight years later a Swiss watchmaker, Jean Leschot, developed the first diamond drill bit for use in a hand operated machine, which was employed to drill blastholes in rock. In 1864, diamond bits were put to their severest test up to that time in the construction of the Mont Cenis Tunnel in the Alps. A few years later a steam-powered diamond drill with a speed of 30 rpm was able to penetrate rock at the modest rate of 0.3 m/hr. As the industrial revolution gained momentum on both sides of the Atlantic, metal replaced wood and machines replaced people. Thus the foundation was laid for precision engineering and the recognition of diamonds as an indispensable tool of industry. The next major demand for industrial diamonds came after World War I with the development of cemented carbide cutting tools. Diamond was found to be the most effective medium for finishing and grinding the new ultrahard metal. This discovery rapidly increased the demand for industrial diamonds. The availability of inexpensive diamond material inspired tremendous research into applications. By 1935, the first successful phenol-resin grinding wheel containing diamond had been marketed. Soon afterward, the metal-bonded and vitrified diamond wheels were produced, and, as the matrices and bonds that held the diamond grit in place began to improve, the popularity of diamond grinding wheels grew. The outbreak of World War II, and the accompanying increase in use of hard-metal tools in the munitions industry, increased the demand for industrial diamonds. Since about 1950, the development of ultrahard ceramics, semi- conductor materials, plastics, and exotic metal alloys has further consolidated the diamond's position as an indispensable tool of industry. Only diamond is hard enough to cut these superhard materials with the precision, speed, and economy that industry demands today. Special machines equipped with industrial diamonds are used to remove bumps from concrete runways and highways and to modify highway surfaces in order to prevent skid accidents. Many skids are caused by hydroplaning, a phenomenon that occurs when the roadway is wet. Tires mount a film of water and virtually lose contact with the road surface. Diamond machines cut neat, narrow
Citation

APA: K. Reckling R. B. Hoy Stanley J. LeFond Derek G. Fullerton Unni H. Rowell  (1994)  Diamonds, Industrial

MLA: K. Reckling R. B. Hoy Stanley J. LeFond Derek G. Fullerton Unni H. Rowell Diamonds, Industrial. Society for Mining, Metallurgy & Exploration, 1994.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account