Discussion - Iron and Steel Division (39a2041c-2139-4b16-af0a-9798a49f5119)

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 2
- File Size:
- 154 KB
- Publication Date:
- Jan 1, 1961
Abstract
R. Schuhmann, Jr. (Purdue University)— Fulton and Chipman's results on rate of silica reduction from slags are analogous in many was to the results of Parlee, Seagle, and Schuhmann10 on rate of alumina reduction from alumina crucibles. Both investigations have given comparably low rates of reduction and slow approaches to equilibrium. Accordingly, we may hypothesize that the rate-determining step is the same in both kinds of experiments; that is, oxygen diffusion across the stagnant boundary layer on the liquid-metal side of the interface between the liquid metal and the oxide phase (slag or solid oxide). I suggest that silica reduction involves the following consecutive steps: I) At the slag-metal interface: SiO2(slag) Si+ 20 II) Transport of oxygen from slag-metal to gas-metal interface: a) diffusion across liquid-metal boundary layer at slag-metal interface. b) convection within the body of liquid metal. c) diffusion across boundary layer at metal-gas interface. 111) At the metal-gas interface: C +O- CO (gas) Iv) At the graphite-metal interface: C (graphite) -C At steelmaking temperatures it is reasonable to assume that equilibrium is attained in all three chemical reactions (I, 111, and IV) right at the respective interfaces. Convection within the stirred liquid metal (step IIb) is also rapid. Transport of Si and C should be orders of magnitude easier than transport of 0, because of the relatively high concentrations of Si and C. Accordingly, we might expect the overall reaction rate to be determined by boundary-layer diffusion of oxygen, either IIa or IIc. Fulton and Chipman's demonstration that bubbling CO through the system had no major effect on reaction rate indicates that IIc is not the slowest step. Therefore, it becomes logical to estimate the maximum rate for step IIa and to compare this theoretical estimate with Fulton and Chipman's experimental data. If oxygen diffusion across the liquid metal boundary layer at the slag metal interface (step IIa) is rate-determining, In this equation, dn sio, /dt is the rate of silica reduction in moles per sec,A is the area of slag-metal interface in sq cm, Do is the diffusivity of oxygen in sq cm per sec, 6, is the boundary layer thickness in cm, c,* is the oxygen concentration right at the slag-metal interface in moles per cubic cm, and co is the oxygen concentration in the body of the liquid metal, also in moles per cubic cm. Equilibrium data" on the silicon deoxidation reaction in liquid iron and steel at 1600°C indicate that the oxygen contents of the liquid metal in Fulton and Chipman's experiments at 1600°C probably fell in the range of 0.5 x10-3 x10-3wt pct. That is, the maximum conceivable value of co*-co for the system under consideration was on the order of 10"5 mole oxygen per cubic cm. On the basis of previously published data,1O,11 it is estimated that Do/0 will fall somewhere in the range from 10-3 to 10-1 cm per sec. The surface area A in Fulton and Chipman's experiments was approximately 20 sq cm, and the weight of metal involved was about 500 grams. Combination of all these figures with the above rate equation leads to an estimate that the rate of silica reduction should fall within the range from 0.002 to 0.2 wt pct Si per hr. This estimate is consistent with the experimental data. For example, Fulton and Chipman's Fig. 2 shows a change of about 0.3 pct Si in 10 hr, corresponding to an average rate of 0.03 pct per hr. According to the proposed hypothesis, increasing the temperature will increase the reaction rate ill two ways: 1) by increasing oxygen diffusivity and 2) by increasing the oxygen concentration (oxygen solubility) in the liquid metal. The combination of these two effects accounts for the high value of the observed activation energy. Summarizing, I propose that the rate of silica reduction, like that of the carbon-oxygen reaction, is diffusion controlled and that low oxygen concentration in the liquid metal is the major factor accounting for the very low observed rates of silica reduction. John Chipman (author's reply)—The authors thank Professor Schuhmann for his interesting contribution. His proposed explanation may well prove to be the correct one. There is clearly a need for much further experimental work on this problem, and further research is in progress.
Citation
APA: (1961) Discussion - Iron and Steel Division (39a2041c-2139-4b16-af0a-9798a49f5119)
MLA: Discussion - Iron and Steel Division (39a2041c-2139-4b16-af0a-9798a49f5119). The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1961.