Disposal Well Design for In Situ Uranium Operations

The American Institute of Mining, Metallurgical, and Petroleum Engineers
Ed L. Reed V. Steve Reed
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
5
File Size:
240 KB
Publication Date:
Jan 1, 1980

Abstract

The in situ leach mining process generates a waste stream that is high in sulfates, total dissolved solids, and radium 226. During the mining phase, the volume of the waste stream is relatively low and consists primarily of the bleed stream. During the restoration phase, larger volumes of waste water are generated. These waste streams require environrnentally sound disposal. The low net evaporation rate in the Coastal Bend area precludes pond evaporation as a feasible disposal alternative. Reverse osmosis is a practical method of reducing the volume of the waste water handled, but the concentrated waste stream from the reverse osmosis unit must be disposed properly. Deep well injection into highly saline reservoirs is considered a sound method of disposing of the liquid waste generated by in situ mining in the Gulf Coast uranium district. Thirteen injection wells have been permitted to serve the disposal needs of the leach mining industry in Texas. Of these 13, 11 have actually been drilled. Seven applications are pending. The injection zones for the permitted wells range from depths of 3050 to 6200 feet. Pressure limitations imposed on these wells range from 500 psi to 1350 psi. The following criteria are used to determine the desirability of a disposal well site: 1. A minimal number of nearby, improperly plugged borings which penetrate the disposal zone; 2. Minimal crustal disturbance; 3. Sufficient salinity of the water contained in the disposal zone; 4. Protection of oil and gas producing zones; and 5. Sand of sufficient permeability and areal extent to handle the desired volume without fracturing the reservoir. 1. Improperly plugged borings: During the early part of the century, oil wells, gas wells and test holes were drilled using cable tool equipment, often with a minimum amount of surface casing. Production casing, when it was set, was often partly removed when the holes were abandoned. Thus, wells drilled prior to 1940 frequently have less than 100 feet of surface casing and either no production casing or the upper part of the production casing removed. Additionally, these holes are often plugged only with mud. The close proximity of these holes to an injection well location are a concern in that they can provide an avenue for injection-depth fluids to migrate up the bore hole and jeopardize shallower fresh water reservoirs. Usually, where there are more than 6 or 8 poorly plugged borings in a 2 1/2 mile radius of the well site, it is preferable to examine deeper zones for disposal well potential. The deeper zones are especially attractive where the borings are not in a cluster, which renders monitoring more difficult. Often, even the deeper disposal zones are penetrated by a few improperly plugged borings. When this condition arises, the potential for leakage through the borings can be addressed in the following ways. a. Demonstration that the static head in the boring is higher than the anticipated increase in bottom hole pressure generated at the boring by the disposal well. A 100 psi differential between these two pressures is recommended. The calculated increased pressure at a boring caused by injection should be refined using annual bottom hole pressure measurements in the disposal well. Figure 1 illustrates an injection pressure map which can be overlain on the oil well map to determine the anticipated increase in pressure expected at each oil, gas or abandoned hole. b. Shallow ground water monitoring. A shallow monitor well is drilled next to the boring and both pressure and quality measurements are made periodically in the shallow well. c. Disposal zone monitoring. Recently there has been a tendency for regulators to require disposal depth monitor wells instead of shallow well monitoring. We consider disposal depth monitoring to be a less effective method of monitoring because it provides only indirect evidence of potential problems. Assumptions have to be made for the unplugged borings, such as mud weight, that are not addressed by the disposal zone monitoring program. There is little improvement with this system to that discussed in "a" above. A shallow zone monitoring program, however, yields direct evidence of a developing problem with an unplugged boring. Leakage by the boring will be detected quickly by an abnormal increase in pressure in the shallow well. Quality monitoring will detect upward migration of poor quality fluids. The pressure data provide an early warning of impending leakage; the quality monitoring will detect actual fluid migration.
Citation

APA: Ed L. Reed V. Steve Reed  (1980)  Disposal Well Design for In Situ Uranium Operations

MLA: Ed L. Reed V. Steve Reed Disposal Well Design for In Situ Uranium Operations. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1980.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account