Drilling and Production Equipment, Methods and Materials - A Hydraulic Process for Increasing the Productivity of Wells

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 8
- File Size:
- 615 KB
- Publication Date:
- Jan 1, 1949
Abstract
The oil industry has long recognized the need for increasing well productivity. To meet this need, a process is being developed whereby the producing formation permeability is increased by hydraulically fracturing the formation. The "Hydrafrac" process, as it is now being used, consists of two steps: (1) injecting a viscous liquid containing a granular material, such as sand for a propping agent, under high hydraulic pressure to fracture the formation; (2) causing the viscous liquid to change from a high to a low viscosity so that it may be readily displaced from the formation. To date the process has been used in 32 jobs on 23 wells in 7 fields, resulting in a sustained increase in production in 11 wells. INTRODUCTION Need For Process Although explosives, acidizing, and other methods have long been used, there still exists a need for artificial means of improving the productive ability of oil and gas wells, particularly for wells which produce from formations which do not react readily with acids. This paper discusses the development of a hydraulic fracturing process, "Hydrafrac", which shows distinct promise of increasing production rates from wells producing from any type of formation. The method is also considered applicable to gas and water injection wells, wells used for solution mining of salts and, with some modification, to water wells and sulphur wells. Requirements of Process In considering such a possible process, it appeared that certain requirements must be met. Some of these are as follows: A. The hydraulic fluid selected must be sufficiently viscous that it can be injected into the well at pressure high enough to cause fracturing. B. The hydraulic fluid should carry in suspension a propping agent, such as sand, so that once a fracture is formed, it will be prevented from closing off and the fracture created will remain to serve as a flow channel for oil and gas. C. The fluid should be an oily one rather than a water-base fluid, because the latter would be harmful to many formations. D. After the fracture is made, it is essential that the fracturing fluid be thin enough to flow hack out of the well and not stay in place and plug the crack which it has formed. E. Sufficient pump capacity must be available to inject the fluid faster than it will leak away into the porous rock formation. F. In many instances, formation packers must be used to confine the fracture to the desired level, and to obtain the advantages of multiple fracturing. Development of Process As a necessary step in the development of this process, it was deemed advisable to determine if the Hydrafrac fluids were actually fracturing the formation or whether these special fluids were merely leaking away into the surrounding formation. To determine this, a shallow well, 15 feet deep, was drilled into a hard sandstone. Casing was set, the plug drilled, and the well deepened in the conventional manner. A fracturing fluid dyed a bright red was used to break down the formation. Sand mixed with distinctively colored solids was injected into the well with the fracturing fluid to prop open any fracture made in the formation. A simulated gel breaker solution dyed a bright blue was then pumped into the well to determine if the gel breaker would follow the first solution. The results are shown in Figure 1. It was noted that a fracture was formed about the well bore, that the propping agent was transported back into the break, and that the breaker solution did actually follow the fracturing gel out into the fracture. While it is realized that this shallow well test is probably not exactly equivalent to a deep test, the results were interpreted as being a definite indication of what happens down the hole during a Hydrafrac job. Of interest in this connection is an investigation reported by S. T. Yuster and J. C. Calhoun, Jr.' This study, re~orted after the Hydrafrac work was under way, presents some excellent field data supporting the theory of fracturing a formation with hydraulic pressure. METHOD Steps of Hydrafrcu: Process Figure 2 shows a simplified cross-sectional view of a well treated by one version of the process. The first step, formation breakdown, is done with a viscous fluid, usually consisting of an oil such as crude oil or gasoline, to which has been added a bodying agent. Due to availability and price, war-surplus Napalm has been used in the majority of experiments to date. Napalm is the soap which was used in the war to make "jellied gasoline". The next step consists of breaking down the viscosity of the gel by injecting a gel-breaker solution and then after several hours, putting the well back on production. Figure 3 shows diagram-matically, a typical field hookup. The oil or gasoline is unloaded into the 10 bbl. tank shown on the left rear of the truck. This base fluid is picked up by the mixing pump and pumped through the jet mixer, where the granular soap is added. Next it goes into a small mixing tub, from which the high-pressure pump takes suction. The solution is then pumped into the well. The breaker solution is then taken from an extra tank and is displaced into the well immediately following the gel. When required, additional trucks may
Citation
APA:
(1949) Drilling and Production Equipment, Methods and Materials - A Hydraulic Process for Increasing the Productivity of WellsMLA: Drilling and Production Equipment, Methods and Materials - A Hydraulic Process for Increasing the Productivity of Wells. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1949.