Drilling – Equipment, Methods and Materials - A Laboratory Study of Rock Breakage by Rotary Drill...

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 7
- File Size:
- 1960 KB
- Publication Date:
Abstract
An apparatus and a procedure for determining the viscosity behavior of hydrocarbons at pressures up to 10,000 psia and temperatures between 77 and 400° F are described. The equipment is suitable for measuring viscosity of either the liquid or vapor phases or the fluid above the two-phase envelope for systems exhihiting retrograde phenomena, according no the phase state of the system within these ranges of temperature and pressure. Equations are developed for calculation of viscosity from the experimental measurements, and new data for the viscosities of ethane and propane at 77° F are reported. INTRODUCTION With the advent of higher pressures and temperatures in industrial processes and deep petroleum and natural gas reservoirs, demand has increased for accurate values of physical properties of hydrocarbons under these conditions. Proportionately, more frequent occurrence of natural gas and condensate-type fluids is encountered as fluid hydrocarbons are discovered at greater depths. This increases the importance, to the reservoir engineer, of being able to predict accurately the physical properties of light hydrocarbon systems in the dense-gas and light-liquid phase states. Reliable gas viscosity data are limited primarily to measurements made on pure components near ambient temperature and at low pressures. Few investigations have been reported for high pressures, and except for methane, data on light hydrocarbons are subject to question. This is demonstrated by the large discrepancy between sets of data on the same component reported by different investigators. For mixtures in the dense gas and light liquid regions and for fluids exhibiting retrograde behavior there are very few published experimental data. Viscosity data for methane have been reported by Bicher and Katz,1 Sage and Lacey,12 Comings, et al,3 Golubev,3 and Carr,3 with good agreement among the last three sets of data. Comings, Golubev and Carr utilized capillary tube instruments for which the theory of fluid flow is well established. The theory permits calculation of the viscosity directly from the experi- mental data and dimensions of the instrument alone. Sage and Lacey, and Bicher and Katz used rolling-ball viscometers. The theory of the rolling-ball viscometer has not been completely established, and these instruments presently require calibration by use of fluids of known viscosity behavior before viscosities of test fluids can be measured. To obtain accurate data it is necessary that the rolling-ball viscometers be calibrated by use of fluids of density and viscosity similar to the test fluids, a difficult selection for the gas phase. From the methane data and experimental tests on various natural gases, Carr developed a correlation for predicting the PVT behavior of light natural gases.2,3,4 This correlation was based on data for a very limited composition range; its application to rich gases and condensate fluids is questionable. The object of this investigation is to develop an instrument which can be used to obtain viscosity data at reservoir temperatures and pressures, for rich gases, condensate-type systems above the two-phase envelope and light liquid mixtures. These data will be used in an effort to develop correlations to represent the viscosity behavior of these fluids. APPARATUS In a previous viscosity study Carr2 utilized a modified Rankine capillary viscometer configuration," Fig. 1. In this instrument the gas to be tested is forced through the capillary tube in laminar flow by motion of a mercury pellet in the fall tube, the measured displacement time being that required for the mercury slug to move between the brass timer rings. The viscometer is constructed of glass and mounted in a steel pressure vessel. The test gas pressure in the viscometer is balanced by an inert gas (usually nitrogen) in the vessel. Excellent results have been obtained with instruments of this type, with Carr2 and Comings5 reporting repro-ducibilities of 99.5 to 99.3 per cent and an estimated absolute accuracy of 99 per cent. However, these instruments have limitations which have precluded their use for liquids. The need for maintaining a balance between pressures of the test fluid and inert gas in the viscometer vessel presents operating problems, and requires charging the test fluid to the viscometer very slowly. The principle drawback to the Rankine unit is behavior of the mercury slug which provides the pressure differential across the capillary. When even trace quantities of propane or heavier hydrocarbons are present in the test gas, the mercury tends to subdivide
Citation
APA:
Drilling – Equipment, Methods and Materials - A Laboratory Study of Rock Breakage by Rotary Drill...MLA: Drilling – Equipment, Methods and Materials - A Laboratory Study of Rock Breakage by Rotary Drill.... The American Institute of Mining, Metallurgical, and Petroleum Engineers,