Drilling Fluids and Cement - Measuring and Interpreting High-Temperature Shear Strengths of Drilling Fluids

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 6
- File Size:
- 487 KB
- Publication Date:
- Jan 1, 1953
Abstract
INTRODUCTION Deeper drilling for oil is becoming more and more the rule rather than the exception. With deeper drilling come additional problems, perhaps the greatest being those brought on by the higher temperatures encountered down the hole. particularly in the Gulf Coast region of Texas and Louisiana. Temperature gradients of the order of 1.8° to 2.0°F/100 ft are not unusual, and a gradient of 2.3"F.'100 ft is found in some areas of Texas. With a mean surface temperature of 74oF, the following temperatures could be expected for a geothermal gradient of 2.0°F; 100 ft: at 10,000 it. 271°F. 12,000 ft, 314°F: 14,000 ft, 354,oF; and 16.000 ft. 394°F. Severe gelation of lime-base drilling fluid in wells that have high bottom hole temperatures has become perhaps the most serious difficulty enconntered in drilling under such conditions. Lime-base drilling fluids have been very succesefully and widely used in the drilling of wells in the Gulf Coast region because of their inherent stability toward contaminants. their ability to suppress the swelling dispersion of bentonitic shales, and their ease of maintainance. The gradual recognition: during the past few years, that these muds were. in themselve. the cause of many difficulties experienced in drilling has led to wide-pread efforts by the drilling industry. to determine the reasons for the failure of these mud systems and to develop mud systems capable of performing satisfactorily under high-temperature conditios. MANIFESTATIONS OF HIGH-TEMPERATURE GELATION it is generally possible to recognize the symptons of high-temperature gelation early enough that advance predictions can be made of serious difficulties. in mud control, and the useful life of the drilling fluids can be extended by proper treatment. Following i.; a list of the manifestations of high-temperature gelation: (1) The drill string 'takes weight' while going in the hole after a trip. In early stages of high-temperature gelation it is possible to notice a slight reduction in drill string weight as the drill pipe is lowred near the bottom of the hole. (2) Excessive pump pressure is required to .tart the circulation of drilling fluid at or near the bottom of the hole when going hack to bottom after a trip. As the severity of the gelation increases it may be necessary to break circulation a number of times when going in the hole. (3) The drilling fluid from the bottom of the hole is thick and often granular or lumpy when pumped up after making a round trip. In a severely gelled drilling fluid system such a condition may be irreversible; that is, it cannot be stirred or chemically treated to produce a satisfactory drilling fluid. (4) Completion tool.. such as logging tools or perforating guns will not sink to the bottom of the hole. On some occasions completion tools will become stuck and require a fishing job to retrieve them if the wire line attached to them is broken. It is often difficult to determine whether the condition of the drilling fluid is responsible for sticking the tool or whether the wire line becomes key seated in a crooked hole and causes the allow difficulty. When there are 110 other symptoms of high-temperature gelation. then the difficulty may usually be attributed to the latter cause. (5) In extreme cases of high-temperature gelation it is necessary to "wash" and "ream" when going back to bottom after coming out of the hole. (6) In many -instance. it has been found to be extremely difficult and expensive to 1111 production packers 2nd tubing in moderately deep oil wells which had been drilled with a lime-base drilling fluid. In such instances-the original mud had apparently "set" to a consistency approaching that of a weak cement. CAUSES OF HIGH-TEMPERATURE GELATION Extensive test; have indicated that a lime-base mud does not develop a highly gelled condition at temperatures below 250°F. whereas above that temperature such condition often develops rapidly. (Fig. 1) concurrently. the following changes are evident ill the mud: (1) The alkalinity of the mud decreases to a very low value. with both caustic soda and lime being consumed. (2) The quartz content of the mud decreases sharply. (3) The bentonitic content of the mud decreases or di-appears, with concurrent decrease or loss of base exchange capacity of mud solids. (4) New compounds formed in the mud have been found to be cal-cium silicate, calcium aluminum silicate, and calcium sodium aluminum silicate. (5) The mud loses the ability to form a filter cake of low permeability. The above characteristics have been discussed, in part. by other authors
Citation
APA:
(1953) Drilling Fluids and Cement - Measuring and Interpreting High-Temperature Shear Strengths of Drilling FluidsMLA: Drilling Fluids and Cement - Measuring and Interpreting High-Temperature Shear Strengths of Drilling Fluids. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1953.