Drilling Technology - Drilling Fluid Filter Loss at High Temperatures and Pressures

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 6
- File Size:
- 471 KB
- Publication Date:
- Jan 1, 1952
Abstract
This paper discusses the results obtained from high temperature, high pressure filter loss studies in which field samples of clay-water, emulsion, and oil base fluids were used. High temperature, high pressure tests of some premium priced emrilsion and oil base drilling fluids show filter loss peculiarities that are not predicted by standard API tests. It is recommended that high temperature, high pressure filter loss tests be used to evaluate the performance of such fluids. Apparatus is described which proved to be satisfactory for evaluating filter loss behavior over a wide range of temperatures and pressures. INTRODUCTION The petroleum industry spends large sums of money each year on chemical treating agents for lowering filter loss and on premium-priced low filter loss drilling fluids. While it is an accepted fact that low filter loss is advantageous during drilling operations, it is questionable whether the present standard method of determining filter loss gives a reliable indication of the loss to he expected under bottom hole conditions. The purpose of this paper is to show that high temperature. high pressure filter loss tests Should be used to evaluate filter loss behavior of fluids for deep drilling. Concern over possible effects of filter loss on oil well drilling and well productivity dates back to the early 1920's. During the years 1922 to 1924, filtration studies were reported by Knapp,' Anderson2 and Kirwan." These studies were the first to be reported in the literature on this subject. No further information was published on the subject until 1932 when Rubel' presented a paper in which he discussed the effect of drilling fluids on oil well productivity. In 1935. .Jones and Babson constructed the first laboratory tester designed to study the effects of temperature and pressure on the filter loss behavior of clay-water drilling fluids. In a discussion of their investigations, Jones and Babsons stated, "Performance characteristics of a mud can he evaluated with considerable reliability by a single test at 2,000 psi and 200°F. Exact correlation between the results of performance test5 made under these conditions and the behavior of muds in actual drilling operations is of course impossible." Jones arid Babson apparently were well aware that at best laboratory tests can give only qualitative answers to the question of what is the actual behavior of a drilling fluid when subjected to deep drilling conditions. Jones' presented a paper in 1937 in which he described a static filter loss tester to be used for routine filter loss tests. This instrument subsequently was adopted as the standard APl filter loss tester. In 1938, Larsen7 developed a relationship between filtrate volume and filtrate time that is in general acceptance today. Larsen was cognizant of the danger of estimating bottom hole behavior from filter loss measurements at room temperature. He tried to predict the effect of temperature on filter loss by relating temperature effects through the temperature dependence of filtrate viscosity. This was undoubtedly an over-sirriplification of the temperature dependence of drilling fluid filter loss. In 1940, Byck" published a summary of experimental results of filter loss tests made on six representative California clsy-water drilling fluids. He concluded that "no existing method will permit even an approximate determination of the filtration rate at high temperature from data at room temperature. It is necessary to measure filtration at the temperature actually anticipated in the well, or to make a sufficient number of tests at various lower temperatures so that a small extrapolation of these data to the anticipated well temperature may be applied." Byck's findings were presuma1)ly well accepted and recognized by drilling Fluid technologists, and yet, they did not lead to wide adoption of high temperature drilling fluid filtration equipment. This is evidenced by the fact that no addition information has appeared in print on the subject since 194). Study of Byck's data shows that there was a useful consistency in them. The fluids did not show predictable losses at high temperatures, but they did line up at high temperatures in approximately the same order that they lined up at low temperatures. That is, if a fluid appeared to be a good fluid with relatively low loss at low temperatures, it would also be a good fluid with relatively low loss at high temperatures. In the last decade. the above situation has changed. The drilling fluid art is markedly different from what it was. The outstanding change, as far as the present discussion is concerned, has been the adoption of wholly new types of drilling fluids. Oil base and emulsion drilling fluids have come in to wide use. It is, therefore, necessary- to re-examine previously satisfactory generalizations to see if they are still valid. It turns out. as might have been expected. that Byck's explicit generalization. already quoted, is still true. Filter losses at high temperatures cannot be predicted from filter losses at low temperatures. However, no further generalizations are valid now. Fluids of different chemical types show different general behaviors. No longer do the fluids line up approximately the same at high temperatures as they do at low temperatures. They may line up entirely differently. Special fluids exhibiting very low loss at low temperatures may have losses as high as those of ordinary clay-water fluids at high temperatures. This fact is highly significant, because premium prices are being paid for the special fluids.
Citation
APA:
(1952) Drilling Technology - Drilling Fluid Filter Loss at High Temperatures and PressuresMLA: Drilling Technology - Drilling Fluid Filter Loss at High Temperatures and Pressures. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1952.