Drilling Technology - Radial Filtration of Drilling Mud

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 6
- File Size:
- 513 KB
- Publication Date:
- Jan 1, 1952
Abstract
A laboratory investigation has been made of the effects of mud hydraulics upon the formation and erosion of mud filter cakes. The tests were conducted to simulate drilling conditions as nearly as possible. The formation of mud filter cake in a drilling well does not proceed at a uniform and unbroken rate. Instead, the rate of cake accumulation depends upon whether or not the mud is being circulated. If the mud column is quiescent, filter cake formation is a smooth function of the filtration characteristics of the system. If the mud is being circulated filter cake formation depends not only upon the filtration characteristics of the mud but also upon the erosive action of the flowing mud column Filter cakes formed during continuous mud circulation were observed to reach an equilibrium thickness after several hours' circulation. Mud circulation was maintained at a constant volumetric rate throughout each experiment. The fluid velocity at equilibrium cake thickness was dependent upon the thickness of the filter cake. Muds having exceptionally high water loss deposited thick filter cakes in spite of very high eroding velocities. The muds having good filtration characteristics deposited thin filter cakes at equilibrium circulating velocities well within tile range of those in a drilling well. It was observed that filter cakes deposited during stagnant filtration were quite difficult to erode by mud circulation. The - rate of crosion computed from the rate of filtrate accumulation after equilibrium cake thickness had been reached was in reasonable agreement with the rate of erosion obtained by direct observation. Continuous mud circulation usually caused the permeability of the filter cake to decrease with time. INTRODUCTION Many of the difficulties encountered during tile drilling of a well have been attributed to the loss of water from the mud and the attendant deposition of solids upon the walls of the hole. Past experience has shown that a reduction of the filtration rate of the drilling fluid eliminates or greatly reduces these difficulties. Definite filtration requirements, however, are hard to establish for a given set of conditions. This is due. in part, to the fact that the usual filtration test performed upon mud doe? not simulate well conditions as closely as desirable. The filtration characteristics of a mud are customarily determined by means of the standard low-pressure API wall-building tester.' In this instrument a filter cake is deposited upon a horizontal bed under a pressure differential of 100 psi. The rnud is quiescent during the filtration period. In actual practice. mud filtration occurs within a well under quite different conditions. One of the major differences is that mud flows upward across the filter bed as the filter cake forms. This undoubtedly produces a change in the filter cake which cannot be reflected in the results of the API test. The laboratory work described in this paper had as its primary objective a better understanding of the influence of mud circulation upon the thickness and ,characteristics of the filter cakes deposited under conditions similar to those existing in a drilling well. ANALYSIS OF PROBLEM Once a permeable formation is penetrated by the bit, filtrate from the mud flows into the formation. 'he mud solids plaster against the walls of the hole, forming a filter cake. If the mud column is stagnant, that is, if it is not being circulated. the filter cake will increase in thickness until the hole is filled. Prior to the time that the hole is filled, the thickness of filter cake existing at any given time will be a function of the filtration characteristics of the mud, the temperature, and the pressure differential. The effects of these variables have been investigated in the past for both flat bed filtration2'3 and for radial filtration.' When the mud is circulated in a hole in which a filter cake i. being deposited. some of the solids that would ordinarily deposit in the filter cake will be carried away by the eroding action of the mud. This will limit. filter cake thickness. Some work has been done to determine the effect of flow upon the filtration rate in a circulating mud system' but little work has been done upon the factors which determine the filter cake thickness existing in a circulating system. On first sight it would appear that the major factors controlling filter cake formation in a circulating system should be: 1. The rate of deposition of solids from the mud. 2. The erosive force that the flowing mud exerts upon the filter cake. 'A. The erodabilitv of the filter cake. 4. Any change in filter cake characteristics attributable to the scouring action of the mud. The rate at which solids are deposited from the mud will be controlled to a large degree by the filtration characteristics of the mud, the pressure differential. the temperature under
Citation
APA:
(1952) Drilling Technology - Radial Filtration of Drilling MudMLA: Drilling Technology - Radial Filtration of Drilling Mud. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1952.