Economic Aspects Of Sulphuric Acid Manufacture

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 4
- File Size:
- 361 KB
- Publication Date:
- Jan 1, 1952
Abstract
THE consumption of sulphuric acid, one of the most important commodities in our modern industrial world, is often used as a barometer for industrial activity. The economics of acid manufacture are largely dependent upon the location of the place of consumption and the availability of raw materials in that locality. Sulphuric acid is made from SO2 oxygen from the air and water. Therefore the sulphur dioxide is the only raw material to be considered in an economic study. SO2 can be obtained from almost any material containing inorganic sulphur, such as elemental sulphur, pyrites, coal, sour gas and oil, metallurgical gases, waste gases, or gypsum and anhydrite. Many tons of acid can also be reclaimed by the recovery and concentration of spent acids. The aim of this paper is to present a guide to the economic aspects to be considered when the installation of an acid plant is contemplated. It must be remembered that 1 ton of elemental sulphur produces 3 tons of sulphuric acid and that the shipping of sulphuric acid by tank car is very costly. The size of the plant must also be given careful consideration. For instance, operation of a plant producing 5 tons of acid per day might be warranted in Brazil or Pakistan, whereas economics usually favor buying quantities up to 50 tons per day for use within the United States. Elemental sulphur, when available at the low price of 1 ½ ¢ per lb delivered at an acid plant, has always been the raw material most frequently used for sulphuric acid. All conditions favor its use at this price. The so-called sulphur shortage has been the subject of so many technical papers, magazine articles, and newspaper items during the past year that it hardly seems necessary to mention it again, but a very brief review of the matter will serve as a foundation for the discussion that follows. There is no shortage of sulphur. Only a shortage of low-cost Frasch-mined brimstone exists today. Other more expensive sulphur-bearing materials are plentiful, both in the United States and abroad. The low cost of Frasch-mined brimstone has discouraged the development of higher cost sources. However, the approaching depletion of Gulf Coast dome deposits and the greatly increased demand for sulphur here and abroad have made it necessary for industry to prepare for conversion to utilize sulphur in other forms. For future planning this situation must be considered permanent and not temporary. This conclusion is based on the fact that although sulphur demand will continue to rise, the production of Frasch-mined sulphur probably will not increase greatly beyond its present level of about 5,000,000 long tons per year. The International Materials Conference in Washington estimates 1952 requirements of the free world at nearly 7 ½ million long tons; and the Defense Production Administration has recently set a new goal for 8,400,000 long tons annual domestic production by 1955. The total sulphur equivalent produced in this country in 1950 was 6 million tons. What, then, are the alternatives for the manufacture of the vital chemical, sulphuric acid? Today about 85 pct of this country's sulphur, and nearly 50 pct of the world supply, comes from our Gulf Coast salt domes and is extracted from the earth by Frasch's hot water process. The Gulf Coast salt dome deposits have been the most important known natural deposits in the world, producing 90 million tons of sulphur during the past 50 years. However, at the present rate of extraction these deposits cannot be expected to last indefinitely. Pyrites Pyrites are, and have been for many years, the source of more than 50 pct of the world's sulphur requirements. The principal use, of course, is in the manufacture of sulphuric acid. The use of pyrites in the United States has diminished greatly because of the availability of low cost native sulphur, but pyrites have continued a major source of sulphur in many other countries. The most available pyrites for use in this country are in the form of lump pyritic ore and in mill tailings from flotation of other minerals such as lead, zinc, copper, gold, and silver. An important factor, when the use of pyrites for acid manufacture is being considered, is the disposal of calcine. A ton of sulphuric acid requires approximately ¾ ton of high-grade pyrite and results in ½ ton of calcine. If the calcine is a fairly pure oxide, free of harmful impurities, it can be used, after sintering, in an iron blast furnace burden. Its value might be as high as 15¢ per unit of Fe at the blast furnace; or possibly $10.00 per ton of sinter, if it assays 65 pct Fe. This might result in a credit of $4.00 per ton of acid if the sintering plant and blast furnace are both located adjacent to the acid plant. On the other hand, several factors must be considered before this credit can be realized, i.e., freight to blast furnace, availability of sintering facilities, methods of eliminating impurities, and the removal of valuable metal values. In some locations it would be most economical to dump the calcines.
Citation
APA:
(1952) Economic Aspects Of Sulphuric Acid ManufactureMLA: Economic Aspects Of Sulphuric Acid Manufacture. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1952.