Electrical Logging - Relationship of Drilling Mud Resistivity to Mud Filtrate Resistivity

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 3
- File Size:
- 198 KB
- Publication Date:
- Jan 1, 1949
Abstract
The effect of suspended solids on the resistivity of slurries is discussed and the relationship between drilling mud resistivity and mud filtrate investigated. It is concluded that it is erroneous to substitute mud resistivity for mud filtrate resistivity in electric log calculations. A recommendation is made that both the bud resistivity and the mud filtrate resistivity be determined when electric logs are run. INTRODUCTION The electric log is influenced not only by the resistvity of the drilling mud in the borehole at the time of logging but also by the resistivity of the drilling mud filtrate. Sherborne and Newtoni investigated the relationship of mud resistivity to mud filtrate resistivity and concluded that, "The resistivity of the mud in most cases closely approximates that of its filtrate," and "In fact, with the exception of Aquagel and its filtrate, the figures for any particular mud and filtrate are almost identical." Present practice is to determine only the drilling mud resistivity and apply this same value to calculations involving the mud filtrate. The purpose of this study is to reexamine the factors governing the relationship between mud resistivity and mud filtrate resistivity. EFFECT OF BOREHO1.E FLUID ON THE ELECTRIC LOG Resistivity Log The resistivity log may be modified by the resistivity of the borehole fluid in two different ways: (1) The apparent resistivity of a for-formation may be different from the true resistivity of the formation because of the flow of some current through the drilling mud in the borehole. Therefore the resistivity of the mud is an important factor. (2) The apparent resistivity may differ from the true resistivity, if a formation is invaded by mud filtrate, because of displacement by the mud filtrate of some of the interstitial fluid in the formation. In this case the resistivity of the mud filtrate rather than the resistivity of the mud is the important factor. Self Potential Log The self potential arises, in part, from electrochemical effects resulting from the interaction of connate waters in porous formations and the fluid in the borehole. Expressed in simple form, E = Klog-p where E is the electrochemical self potential, K is a derived constant, pl is the resistivity of the borehole fluid, and p2 the resistivity of the water in the formation. A theory of the electrochemical component of the self potential in boreholes has been recently set forth by Wyllie.3 In the above equation resistivities have been substituted for activities of the ions in the fluids.' It is therefore apparent that the resistivity of the mud filtrate is more nearly representative of the activities of the ions than is the resistivity of the mud. However, it is possible that in some instances the ionic activities of cations from certain clays may contribute to the total cationic activity of the drilling fluid to such an extent that the mud resistivity is more nearly representative of the activities than the filtrate resistivity. This is particularly the case when the resistivity of the mud is less than the resistivity of the mud filtrate. In addition the apparent self potential may be influenced by the resistivity of the drilling mud because of current flow through the borehole. RESISTIVITY OF SLURRIES Aqueous drilling muds are slurries containing fine-grained solid particles. The solid constituents consist mainly of added clays and weighting materials in addition to solids contributed by the drilled formations. The filtrate is primarily water in which quantities of salts or other chemicals are dissolved. The resistivity of the fiiltrate is a function of the type and quantity of dissolved material whereas the resistivity of the mud is a function of the combined resistivities of the filtrate and the resistivities of the suspended solids. Experiments have been carried out to determine the relationship between the resistivity of solutions and the quantity and type of solid matter insus-pension. Solid materials of high resistivity, as well as solid materials of relatively low resistivity, have been used. The data obtained make possible the evaluation of the probable effect of suspended solids on the resistivity of drilling mud. Procedure Resistivities were determined by means of a conventional conductivity cell with platinized-platinum electrodes. Total resistance between the electrodes was measured by Kohlrausch's alternating current bridge method using a General Radio Company Type 650-A impedance bridge with telephone. The cell was standardized with potassium chloride solutions of known normalities in order to calibrate the cell so that measured resistances of slurries could be converted to resistivities. Resistivities were determined for mixtures of potassium chloride solution and solid materials by placing a measured quantity of solution in the cell and adding weighed quantities of solid materials in small increments to the solution. The net change in resistance on addition of solid materials was measured. Even distribution of the solid particles was maintained within the cell by a motor-driven glass propeller before measurements were made. Slurries Containing High-Resistivity Solids Powdered silica sand having a maximum diameter of about 60 microns and precipitated chalk of commercial grade were used to make the slurries whose resistivities were measured. Both of these substances have high resistivities, are virtually insoluble, and effectively do not carry current in a slurry. The resistivities of slurries composed of potassium chloride solution and these two solid materials are given in Table 1. The ratio of the resistivity of the solution to the resistivity of the slurries was computed and was found to follow the relationship established by Archie
Citation
APA:
(1949) Electrical Logging - Relationship of Drilling Mud Resistivity to Mud Filtrate ResistivityMLA: Electrical Logging - Relationship of Drilling Mud Resistivity to Mud Filtrate Resistivity. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1949.