Experimental Study on Phosphorus Distribution Ratio and Capacity of Environment-Friendly Dephosphorization Slag for High-Phosphorus Hot Metal Pretreatment

- Organization:
- The Southern African Institute of Mining and Metallurgy
- Pages:
- 5
- File Size:
- 349 KB
- Publication Date:
- Jan 1, 2016
Abstract
"In this investigation, the phosphorus distribution ratios in the CaF2 system and B2O3 system dephosphorization slags for high-phosphorus hot metal pretreatment were measured by an indirect method under laboratory conditions. Firstly, the phosphorus distribution ratio between liquid slag and solid iron was measured, and then the phosphorus distribution ratio between liquid slag and hot metal was calculated. Phosphorus capacity was calculated in terms of the composition and optical basicity of the slag. Dephosphorization slag was also studied by scanning electron microscopy, energy dispersive analysis, and X-ray diffraction analysis. The experimental results show that the phosphorus capacity of the B2O3 slag system is much greater than that of the CaF2 system. It is demonstrated thatB2O3 can completely replace CaF2 as fluxing agent for high-phosphorus hot metal pretreatment. With CaF2 as fluxing agent, the phosphorus capacity increases with increasing CaO content in the slag, but the phosphorus distribution ratio decreases. B2O3, when used as fluxing agent, can react with high melting point phases such as 2CaO·SiO2 and 3CaO·P2O5 in the slag to form new phases with low melting points such as 11CaO·B2O3.4SiO2, 2CaO·B2O3.SiO2, and Ca9.93(P5.84B0.16O24) (B0.67O1.79), thereby acting as a fluxing agent. When the ratio of w(B2O3)/w(CaO) is 0.16, the phosphorus distribution ratio reaches its maximum value, that is, the dephosphorization ability of the slag is at its maximum. IntroductionAs international iron ore prices continue to rise, the development of China's steel industry is facing a lot of pressure. Against this background, development and utilization of domestic high-phosphorus iron ore resources is particularly important. When highphosphorus iron ore is used in ironmaking, the phosphorus content in the hot metal can reach 0.35% or more, and the hot metal must be pretreated. For hot metal with 0.08–0.10% dissolved phosphorus, the traditional hot metal dephosphorization pretreatment technologies are relatively mature. However, when using these methods to dephosphorize hot metal containing 0.35% P or more, the amount of dephosphorization slag can reach 100–150 kg per ton of hot metal. Furthermore, the traditional dephosphorization methods require the addition of large amounts of CaF2 as fluxing agent, and this results in high fluoride levels in the dephosphorization slag. The fluorine in the slag can partially dissolve in water and thereby causes high fluoride concentration in the water and soil. Once the fluoride is absorbed by humans or animals, it can result in toxic effects on the central nervous system and myocardium. In addition, fluoride can accumulate in the environment, and thereby pose a health risk to animals and humans through the food chain (Li, 2007; Liu, Wang, and Dong, 2011, Diao, 2013). The objective of this research is to replace CaF2 with B2O3 as fluxing agent while achieving the expected goals of hot metal pretreatment."
Citation
APA:
(2016) Experimental Study on Phosphorus Distribution Ratio and Capacity of Environment-Friendly Dephosphorization Slag for High-Phosphorus Hot Metal PretreatmentMLA: Experimental Study on Phosphorus Distribution Ratio and Capacity of Environment-Friendly Dephosphorization Slag for High-Phosphorus Hot Metal Pretreatment. The Southern African Institute of Mining and Metallurgy, 2016.