Extractive Metallurgy Division - Conditioning Dwight-Lloyd Gases to Increase Bag Life

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 2
- File Size:
- 130 KB
- Publication Date:
- Jan 1, 1951
Abstract
This paper outlines the development of a program for increasing the life of woolen bags used for filtering Dwight-Lloyd gases by treating the bags and gases with hydrated lime. Methods and apparatus are described for determining alkalinity of dusts, acidity and breaking strength of bag cloth. Procedure and results, based on several years of operation, are presented. DURING 1939, additional facilities were constructed in the Dwight-Lloyd Blast Furnace and Baghouse departments at the Selby, California, Plant of the American Smelting and Refining Co. In order to handle adequately the increased volume of gases from the resultant increase in production, it was necessary to increase gradually the amount of water used for cooling gases ahead of the sinter machine baghouse. As a result of this increased water cooling, the average bag life dropped from 27 months in 1939 to 14 months in 1941. (Table I). This drop in life meant an increased. bag cost, as well as lower recovery of dust and some curtailment of operation. During 1941, it was found new bags showed as high as 0.3 pct acidity* after two weeks of opera- tion and as much as 2.0 pct acidity after some months of operation. This high acidity was present in spite of the fact that free oxide or relative alkalinity of the unburned dust ran from 5 to 6 pct. In view of these circumstances, a twofold program was started in Nov. 1941.t Part one of this program consisted of vigorously dipping all new bags in a weak lime solution, containing 50 lb of hydrated lime per 50 gal of water. Part two consisted of feeding fine, dry, hydrated lime into the gas stream intake of the sinter baghouse fan. Apparatus for feeding this lime is shown in fig. 1. All baghouse chambers are shaken in rotation about once each hour. On alternate hours, the baghouse operator places 50 lb of hydrated lime (one sack) into the lime feeder, starts feeder and immediately starts the bag shaking machinery. The rate at which lime is fed is set to coincide with the approximate time necessary to shake all sinter bag-house chambers, or about 15 min. It is felt this method of lime addition is most effective for getting lime into the woolen bag fabric. The amount of lime so fed averages about 600 lb per day. The amount of lime fed per day is varied to keep a minimum relative alkalinity of 9 pct in the unburned sinter dust. A daily dust sample is taken for alkalinity by allowing dust to accumulate in a sample pipe over a 24-hr period. This sample pipe, placed in any chamber cellar, is 2 in. in diam, 4 ft long, is sealed on the inner end, and capped on the outer end. It has a 1/2 in. slot cut for 18 in. along the tip end. This slot faces upward and allows the pipe to fill gradually with dust as bags are shaken. Breaking strength of bags has, in most cases, been the deciding factor in bag replacement. Bags that normally test 100 psi breaking strength when new are replaced when they test under 35 lb. The method for determining breaking strength is shown in the description accompanying fig. 2. Since the start of the liming program in 1941, bag life has increased from 14 months to an average of over 23 months, with a consequent material decrease in bag cost per year. Acidity, as per cent sulphuric acid, may be determined by means of a Beckman pH meter as follows: From a piece of bag cloth. which has been thoroughly cleaned of dust, a 5 g sample is weighed on a balance. Cut the sample into fine pieces and place in a 400 cc beaker. Add 100 cc (measured) of distilled water and stir vigorously. Filter on suction funnel, holding cloth pulp in beaker with a stirring rod. Wash cloth sample and filter wash water four additional times, each time with 20 cc distilled water, the last time squeezing cloth pulp over funnel. Discard pulp and rinse funnel and filter paper. Pour wash solution jnto measuring graduate and make up to exactly 300 cc with distilled water. Place into clean 600 cc beaker and measure the pH on meter. The per cent acid in bag cloth is read from the following table:—
Citation
APA:
(1951) Extractive Metallurgy Division - Conditioning Dwight-Lloyd Gases to Increase Bag LifeMLA: Extractive Metallurgy Division - Conditioning Dwight-Lloyd Gases to Increase Bag Life. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1951.