Extractive Metallurgy Division - Desilverizing of Lead Bullion

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 11
- File Size:
- 850 KB
- Publication Date:
- Jan 1, 1955
Abstract
IN 1947 the author became interested in the fundamental aspects of the desilverizing of lead by zinc, conducted some experimental work, and searched the technical literature for all available fundamental data. Since then a revival of interest in the subject in Europe resulted in the appearance of quite a number of papers. It became evident that it would be more profitable to collect together and examine thoroughly the results of various workers, than to attempt to duplicate the experimental determinations. There are many inconsistencies in the various publications, and it is opportune to review at this time the present status of knowledge on the Ag-Pb-Zn system. There is also a need for a clear description, in fundamental terms, of the various desilverizing procedures. This paper is presented in four sections: 1—There is an historical review of the origins of the Parkes process, of the results of many attempts to find a satisfactory fundamental explanation for the phenomena, and of the modifications proposed to date. 2—A diagram of the Ag-Pb-Zn system is presented. This is believed to be free of obvious inconsistencies or theoretical impossibilities, although thermodynamic analysis subsequently may reveal errors. 3—The fundamental bases of the various desilverizing procedures, which have been used up to the present day, are described; and a new method is suggested for desilverizing a continuous flow of softened bullion in which the bullion is stirred at a low temperature in two stages producing desilverized lead at least as low in silver as that from the Williams continuous process and a crust which, on liquation, yields a very high-silver Ag-Zn alloy. 4—A suggestion is made for the revival of de-golding practice, following a recently published account which does not seem to have attracted the attention it deserves. The terms "eutectic trough" and "peritectic fold" as used in this paper are synonymous with "line of binary eutectic crystallization" and "line of binary peritectic crystallization" as used by Masing.' The German literature on ternary and higher systems is rather extensive and a fairly general system of nomenclature has arisen, whereas in English usage the corresponding terms are not as well established. For this reason the meanings of terms used in this paper, together with the equivalent German terms, are given as follows: 1—Eutectic trough—eutektische rinne: line at which a liquid precipitates two solids S1 and S2 simultaneously. If the composition of a liquid which is cooling reaches this line, it then follows the course of this line until a eutectic point is reached, or until all the liquid is exhausted. The tangent to the eutec-tic trough cuts the line joining S1S2. 2—Peritectic fold—peritektische rinne: line at which a solid S1 and a liquid L transform into another solid S2. If the composition of a liquid which is precipitating S1 reaches the line, on further cooling only S2 is precipitated. The liquid composition moves from one phase region (L + S1) into the other (L + S2), and does not follow the course of the boundary. The tangent to the peritectic fold cuts the line S1S2 produced nearer S,. 3—Liquid miscibility gap, or conjugate solution region—mischungslucke: the region within which two liquid phases coexist in equilibrium over a certain range of temperature. A system whose composition is represented by a point in this region comprises one liquid at high temperature; then as the temperature is progressively reduced, two liquids, one liquid and one solid, one liquid and two solids, and finally three solids. 4—Liquid miscibility gap boundary—begrenzung der flussigen mischungsliicke: the line along which the surface of the miscibility gap dome, considered as a solid model, intersects the surrounding liquidus surfaces. 5—Tie lines—konoden: lines joining points representing the compositions of two liquids, a liquid and a solid, or two solids, in equilibrium. In binary systems the only tie lines customarily drawn are those through invariant points, e.g., through the eutectics of the Pb-Zn and Ag-Pb systems, or the various peritectics of the Ag-Zn system, as in Figs. 1 to 3. In ternary systems it is desirable to draw sufficient tie lines to indicate the slopes of all possible tie lines. 6—Ternary eutectic point—ternares eutektikum: point at which liquid transforms isothermally to three solids, S1, S2, and S Such a point can lie only within the triangle 7—Invariant peritectic (transformation) point— nonvariante peritektische umsetzungspunkt: (a) — On the miscibility gap boundary, the point at which two liquids and two solids react isothermally so that L, + S, + L, + S2. (b)—On the eutectic trough, the point at which a liquid and three solids react iso-thermally so that L + S, + S2 + S3. Such a point must lie on that side of the line joining S,S which is further from S,. (c)—A further possibility, not found in this ternary system, is that the point is at the intersection of two peritectic folds when the reaction concerned is L + S, + S, + S Historical Introduction Karsten discovered in 1842 that silver and gold may be separated from lead by the addition of zinc.2 Ten years later Parkes used this fact to develop the well known desilverizing process which bears his
Citation
APA:
(1955) Extractive Metallurgy Division - Desilverizing of Lead BullionMLA: Extractive Metallurgy Division - Desilverizing of Lead Bullion. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1955.