Extractive Metallurgy Division - Diffusion in the Solid Silver-Molten Lead System

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 3
- File Size:
- 192 KB
- Publication Date:
- Jan 1, 1961
Abstract
The diffusion coefficients of silver from solid silver in molten lead were measured to within ± 0.8 pet in a columnar type diffusion cell ower, the temperature range of 326° to 530°C. Fick's law describes the process up to 530°C where the laminar mechanism appareltly breaks down. These is negligible resistance at the interface as shown by mathematical analyses. The diffusion coefficients are found concentration independent. IT would seem that diffusion in liquid metals would be free of such effects as molecular structure, dissociation. polarization. and compound formation. This view was taken by Gorman and preckshot in their study of diffusion of copper from solid copper into molten lead. They reported diffusion coefficients which were independent of the concentration over the range of 478° to 750°C. They found that the Stokes-Einstein equation with constant radius of the diffusing specie represented the diffusion data better than Eyring's rate theory equation and Sheibel's correlation. The radius of diffusion was found to be that of the doubly charged copper. There appeared to be no resistance across the solid-liquid boundary. In the present work the diffusion coefficients for silver in liquid lead were measured over a range of temperatures of 350° to 505°C. The solubility of silver in lead over the range of 303° to 630°C was also obtained. These results are compared with calculated or correlated values or with data in the literature. EXPERIMENTAL Procedure—The experimental equipment techniques and procedures were those reported in detail by Gorman and preckshot9 and will not be repeated here. Measured values of WT, Co, A. L were obtained for various diffusion times and the diffusion coefficient was computed for the case of no resistance at the interface9, 11 by: WT/CoAL = 1- 8/p2 n=1 1/(2n - 1)2 exp[-(2n - 1)2p2 Dt/4L2] [1] or where there was resistance at the interface by: WT = 1- ?n=1 2h2/ap2L [sxp [-Dan2t]/[(h2 + an2) L + h] The roots an are those of the transcendental equation3 tan (an L) = Iz/cun. The diffusion coefficient is that defined by Hartley and Crank.7 The total silver in the lead cylinder and equilibrium slug was determined by a cupellation technique' with proper correction for losses. Analysis of known samples showed that this method is surprisingly accurate. The amount of silver in the lead adhering to the silver cylinder was obtained in the same fashion as shown by Gorman and preckshot.9 The small errors involved in this determination are not critical since the silver in this adhering lead layer is only 3 to 15 pet of the total diffused. Materials—Electrolytic silver containing 99.9+ pet Ag obtained from General Refineries of Minneapolis, Minn. was used for all but runs 7 and 8. For the balance of the runs this silver was reduced with hydrogen at 1100°C and its oxygen content was found to be about 0.017 pet. For the runs. 7 and 8, phosphorous-reduced silver of the same purity was obtained from Handy and Harman Co. of Chicago, Ill. The densities of the phosphorus-reduced silver and the hydrogen-reduced electrolytic silver were 10.484 and 10.487 g per cm3, respectively. These values agree with those reported for pure silver. Silver which was reduced at 900 C had an average density of 9.998 g per cm3, indicating porosity. This silver was used for a number of runs which were not tabulated in Table I. These are indicated by crosses on Fig. 2. The 99.999 pet Pb was obtained from the National Lead Co. Research Laboratory of Brooklyn, New York. DISCUSSION OF RESULTS The diffusion and solubility results are reported in Table I for eleven runs using either phosphorus-reduced electrolytic silver or hydrogen-reduced silver at 1100° C. The solubility data shown in Fig. 1 show the excellent agreement with that reported by Heycock and Neville.8 The data of Friedrichs5 apparently are in error. The experimental solubility data of this work are reported to 0.3 pet. The experimental diffusion coefficients computed from Eq. [1] are reported within 1.2 pet of the mean and are plotted in Fig. 2. These are expressed within +0.8 pet of the experimental values over the entire temperature range by: D= 8.26 x 10 -5 e-1925/RT . [3] There appears to be little difference due to the
Citation
APA:
(1961) Extractive Metallurgy Division - Diffusion in the Solid Silver-Molten Lead SystemMLA: Extractive Metallurgy Division - Diffusion in the Solid Silver-Molten Lead System. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1961.