Extractive Metallurgy Division - Equilibrium Pressure Measurements Above ZnS from 680° to 825°C

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 3
- File Size:
- 227 KB
- Publication Date:
- Jan 1, 1955
Abstract
The pressure of the gas in equilibrium with sphalerite has been determined in the temperature range of 680' to 825°C, using the Knudsen orifice method. A comparison of these experimental pressures with those calculated from thermal data and from other equilibrium measurements shows that the vapor above sphalerite is predominantly dissociated ZnS. Equations have been given for correctly calculating dissociation pressures using the Knudsen orifice method. It has been shown that the experimentally determined pressure is the same, whether the zinc sulphide is sphalerite or not, or a mixture of wurtzite and sphalerite. CONFLICTING points of view appear in the literature on the constitution of the vapor in equilibrium with solid zinc sulphide in the vicinity of 800°C. By comparing the dissociation pressure calculated from thermodynamic data and the vapor-pressure determination of ZnS by Veselovski,1 Lumsden2 has concluded that the vapor consists largely of dissociated ZnS. Sen Gupta,' however, concludes from his spectroscopic determinations that the vapor is largely ZnS molecules. In view of the fact that the thermodynamically calculated' dissociation pressure is higher than that experimentally measured by Veselovski, it seemed in order to repeat Veselovski's measurements. Experimental Procedure The method used for the determination of the pressures in this papel- is the Knudsen effusion cell. The apparatus and procedure were described in a previous paper- from this laboratory on the determination of the vapor pressure of silver. The only difference is that the Knudsen cell in this work is made from platinum and there is no external cover around the cell. The cell is an ordinary platinum crucible of 2.2 cm top diameter with a capsule cover. It was thought that platinum might stand up at these temperatures to the solid and gaseous ZnS, since it was found that the weight of the platinum cell itself did not change appreciably on heating ZnS in it at the working temperatures. To insure that reaction of the zinc sulphide with the cell was not giving' a false value, a stabilized zirconia cell was employed for check runs. Fig. 1 shows the comparison, which is satisfactory. Veselovski previously had measured the vapor pressure of ZnS using a silica Knudsen effusion cell. On repeating his experiment in this laboratory, it was found that ZnS at-tacked the silica cell, giving it a marked frosty appearance. This led to the belief that Veselovski's result:; may be in error. Also, he was operating at pressures above the range ordinarily considered safe for the Knudsen method. The effusion rate was measured by weighing the cell before and after each run. The weight loss during heating to temperature and cooling down was measured and subtracted from the weight loss during the actual run. The zinc sulphide used in this investigation was from two sources: Fisher cp grade, and a sample of pure sphalerite supplied by Mr. E. A. Anderson of the New Jersey Zinc Co. Before and after the series of runs with Fisher ZnS, X-ray analysis showed that both wurtzite and sphalerite were present. However, the ratio of sphalerite to wurtzite increased. All measurements were made below the transition temperature which has been reported" to be 1020°C. The data obtained in this investigation are tabulated in Table I. The pressure was calculated by the usual Knudsen formula" on the assumption that ZnS molecules were effusing. From these data, using pure sphalerite in the platinum Knudsen cell, the vapor pressure of ZnS, in mm of Hg, as a function of temperature is given by the solid line in Fig. 1. The best straight line, as determined by the method of least squares, is given by 14405 logpzns =-14405/T +11.032. A comparison of these results with Veselovski's shows that his results are about 50 pct lower. Discussion The vapor in equilibrium with solid zinc sulphide in the temperature range of this study will consist of Zn, S2, and ZnS mol, since other species of zinc and sulphur' are relatively unstable. The question to be settled is whether or not ZnS is largely dissociated. The derivation8 which follows gives the method of calculating the pressure of zinc and sulphur over solid ZnS, assuming complete dissociation, from Knudsen cell data. The free energy of the reaction 2 ZnS(solid) ? 2 Zn(gas) + S2(gas) is given by ?F?° = -RT In K = —RT In p12p2 where p1 is the zinc pressure and p is the sulphur pressure. If dissociation occurs in a closed system,
Citation
APA: (1955) Extractive Metallurgy Division - Equilibrium Pressure Measurements Above ZnS from 680° to 825°C
MLA: Extractive Metallurgy Division - Equilibrium Pressure Measurements Above ZnS from 680° to 825°C. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1955.