Extractive Metallurgy Division - Free Energy of Formation of CdSb

The American Institute of Mining, Metallurgical, and Petroleum Engineers
Richard J. Borg
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
2
File Size:
588 KB
Publication Date:
Jan 1, 1962

Abstract

The vapor pressure of Cd in equilibrium with CdSb in the presence of excess Sb has been measured using the Knudsen effusion method over the temperature range 276° to 379°C. The free energy of formation of CdSb is given by AF° = -1.58 + 1.53 x l0-4 T, kcal per mole. The enthalpy and entropy are obtained from the temperature coefficient of the .free energy. CADMIUM and antimony have almost imperceptible mutual solid solubility but form a single stable intermediate phase, CdSb. This phase, according to Han-sen,l extends from about 49.5 at. pct to 50 at. pct Cd at 300°C and has the orthorhombic structure. The free energy of formation of CdSb can be calculated from the vapor pressure of Cd for compositions which contain less than 49 at. pct Cd. The appropriate reaction and formulae are given by Eqs. [I] and [2]- CdSb(s, ~ Cd(g)-, +Sb(s) [1] Since Sb is in its standard state, Af - N,,AF'-,, = NcdRT In a,, = NcdRT InP/PO [2] In Eq. [2], P, is the vapor pressure of Cd in equilibrium with the alloy, and Po is the vapor pressure in equilibrium with pure solid Cd. It is implicit in this calculation that the free energy only slightly changes within the narrow limits of the single phase field. Thus, the value obtained from the antimony-rich boundary is truly representative of the stoi-chiometric compound. The results reported herein are obtained from a mixture near the eutectic composition, i.e. 59 at. pct Sb. Only two previous investigations" of the free energy of formation of CdSb have been made. Both relied upon the electromotive force method, and measurements were made over relatively narrow temperature ranges which strongly influences the reliability of the values of AH and aS. EXPERIMENTAL The eutectic composition is prepared by fusing reagent grade Cd and Sb by induction heating in vacuo with the starting materials held in a graphite crucible having a threaded lid. The material obtained from the initial melt is pulverized, sealed under high vacuum in a pyrex capsule, and annealed at 420°C for two weeks. X-ray analysis"gives the following lattize parameters: a = 6.436A, b = 8.230& and c = 8.498A using Cu Ka radiation with A = 1.54056. These values are in fair agreement with the result? previously reported by Al~in:4 i.e. a = 6.471A, b = 8.253A, and c = 8.526A. Vapor pressures are measured using an apparatus which has been described elsewhere,= however, with a single important modification. Knudsen effusion cells are made of pyrex with knife-edged orifices made by grinding the convex surface of the lid on #600 emery paper. Photographs taken at known magnifications using a Leitz metallograph enable the determination of the orifice area. Numerous calibration measurements of the vapor pressure of pure Cd give close agreement with values previously reported5,= thus indicating that no significant error can be ascribed to the substitution of glass cells for metal cells used in previous work. Because the vapor pressure of Cd is reliably established and because it is difficult to obtain Clausing factors for the glass cells, the final values used for the orifice areas are calculated from the calibration measurements of the vapor pressure of pure Cd. Effusion runs are started in an atmosphere of purified helium which is quickly evacuated as soon as the cell attains thermal equilibrium. Less than one minute is necessary to obtain high vacuum after evacuation begins, and the temperature seldom varies by more than 0.5oC from the value obtained prior to pumping out the helium. RESULTS The results of this investigation along with other pertinent data are tabulated in Table I. Fig. 2 is the familiar graph of log P against T-10 K. At least mean squares analysis of the data presented in Table I yields the following equation: log1DJP = 8.790 - 6472 x T"1 [3] The deviations of the individual measurements from the values calculated with Eq. 131 are given in column six of Table I; the average deviation is 4.0% of the calculated value. Although the partial molal properties change significantly with composition within the single phase region, the integral thermodynamic value should remain relatively constant. Hence the results of the following calculations, which use the data obtained for the eutectic composition, are probably representative of the equi-atomic compound. Eq. [4] describes the vapor pressure of pure Cd as a function of temperature and may be combined with Eq. [3] to
Citation

APA: Richard J. Borg  (1962)  Extractive Metallurgy Division - Free Energy of Formation of CdSb

MLA: Richard J. Borg Extractive Metallurgy Division - Free Energy of Formation of CdSb. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1962.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account