Extractive Metallurgy Division - Fuming of Zinc from Lead Blast Furnace Slag. A Thermodynamic Study

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 6
- File Size:
- 444 KB
- Publication Date:
- Jan 1, 1956
Abstract
Zinc oxide activities in a typical lead blast furnace slag have been calculated from plant operating data. These activities were used to assess the probable effect of fuel composition, oxygen enrichment, and air preheating on the efficiency and capacity of the slag-fuming operation. THE physical chemistry of zinc fuming has been examined with three objectives in mind: 1—to predict conditions favorable to increasing furnace capacity, 2—to predict the changes required to fume zinc more economically, and 3—to explain reported differences in the efficiencies of various slag-fuming plants. This study, made at ail in the plants and laboratories of The Consolidated Mining and Smelting Co. of Canada Ltd., developed from a program undertaken some three years ago on behalf of the AIME Extractive Metallurgy Div. subcommittee on slag fuming. Lead metallurgists first became interested in the recovery of zinc from lead blast furnace slags in 1905 and 1906. An excellent review of the early experimental work has been made by Courtney,' who described blast furnace, reverberatory furnace, and converter methods of fuming zinc from slag. Some of the investigators did not appreciate the importance of reducing the zinc oxide content of the slag to metal in order to fume it, since they tried compressed air blast without fuel in their earliest attempts. However, by 1908, the importance of reducing the zinc was established.' In 1925, the Waelz process for the recovery of zinc oxide from oxidized zinc ores was developed in Germany.' This process was not readily adaptable to lead blast furnace slags because of the difficulty in handling fusible charges in a kiln. What appears to have been the first slag-fuming operation as it is known was commenced by the Anaconda Copper Mining Co. at East Helena, Mont. in 1927." The first Trail furnace was completed in 1930, and this was followed by the construction of several other slag-fuming plants. During the period in which slag fuming has been extensively employed, little development of the chemistry of this process as a whole has taken place. Several good papers on the petrography of lead blast furnace slags have been published,""= but these studies could do little more than establish the forms in which lead and zinc occur in the initial charge and final products of the slag-fuming operation. In recent years, zinc-smelting problems have been ap- proached from a thermodynamic point of view. Maier has published an excellent thermodynamic treatment of zinc smelting." The important thermodynamic properties of zinc and its compounds have been determined and checked by other investigators.' However, to the best of the authors' knowledge, no thermodynamic treatment of the fuming of zinc from slag has been published. A thermodynamic study of any process requires that the essential chemistry of that process be known. In slag fuming there appear to be some differences of opinion as to whether the active reducing agent is elemental carbon or carbon monoxide. Furthermore, some observers have noted that high volatile coals appear to be more efficient than low volatile coals, indicating that hydrogen is also an important factor in the reducing efficiency of a fuel. That both hydrogen and carbon monoxide are effective reducing agents for the zinc oxide content of lead blast furnace slags can be demonstrated readily by introducing these gases into a slag bath held in a neutral vessel at 2100°F (1150°C). Elemental carbon also will reduce zinc oxide, but it is improbable that much free carbon is available for reduction of zinc, as the reaction between the finely powdered coal and air should be largely completed before the solid coal particles reach the slag. Some large-scale fuming experiments using gaseous hydrocarbons have been carried out by other investigators, but, as far as is known, these have not been developed yet into operating processes. The thermodynamic treatment in this paper is based on the following reactions: 1—to supply the thermal requirements C+V2O2- CO [1] C + 0,-CO, [2] H2+ ~z0,-H,O 131 and 2—to reduce ZnO ZnO + CO + Zn + CO, c41 ZnO + H, e Zn + H,O. [51 The furnace-gas composition also is controlled by the equilibrium constant of the familiar water-gas reaction H,O + CO + CO, + H2. C6l In order for the thermodynamic calculations to be quantitatively applicable, it is necessary that the chemical reactions to which they are being applied
Citation
APA:
(1956) Extractive Metallurgy Division - Fuming of Zinc from Lead Blast Furnace Slag. A Thermodynamic StudyMLA: Extractive Metallurgy Division - Fuming of Zinc from Lead Blast Furnace Slag. A Thermodynamic Study. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1956.