Extractive Metallurgy Division - Lead Blast Furnace Gas Handling and Dust Collection

The American Institute of Mining, Metallurgical, and Petroleum Engineers
R. Bainbridge
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
5
File Size:
393 KB
Publication Date:
Jan 1, 1953

Abstract

THE Consolidated Mining and Smelting CO. of Canada Ltd. has operated a lead smelter at Trail, B. C., for many years. In order to take advantage of metallurgical advances, as well as to improve materials handling methods, this company, commonly known as "Cominco," commenced planning a program of smelter revision and modernization some years ago. The first stage of this program involved the design and construction of a new blast furnace gas cleaning system. The selection of equipment, the design of facilities, and preliminary operating details of this system will be dealt with in this paper. The essential problem was to clean and collect 100 tons of dust daily from 153,000 cfm* (12,225 lb per min) of lead blast furnace gas which varied in temperature from 350º to 1100°F. Because it was desired to collect the dust dry, either a Cottrell or a baghouse cleaning plant was to be selected. Comin-co's many years of experience with both systems provided a background for choosing the most satisfactory installation. All information pertinent to the two methods of dust recovery was carefully investigated, and it was decided to replace the existing equipment with a baghouse. Very briefly, the reasons for this decision were as follows: 1—A baghouse installation would be practical because the SO2 content of the gas was low and corrosion would not be a problem if the baghouse operating temperatures were held sufficiently above the dew point. 2—Variations in the physical characteristics of fume and dust, which are inherent in this blast furnace operation, should not substantially affect the operating efficiency of a baghouse. 3—For the same capital cost, metal losses (stack and water losses) would be appreciably less in a baghouse. 4—A baghouse would be easier to operate, and would not require the use of highly skilled labor. 5—Operating and maintenance costs of a bag-house would be lower. 6—The only available space for reconstruction was relatively small, and not suited to a Cottrell installation. Once the baghouse system was decided upon, detailed design of the installation was begun. Baghouse Design Gas Cooling: Before the required capacity of the baghouse could be determined, the method of cooling the gas to the temperature necessary for bag-house operation had to be chosen. The problem confronting the design engineers was how best to cool 153,000 cfm of gas from a temperature ranging from 350°F to brief peaks of 1100°F, down to 210°F, the maximum safe baghouse inlet temperature. A survey of existing blast furnace gas temperatures in the outlet flue showed that the normal range was as given in Table I. The obvious choices of cooling method were: 1— cool completely by the addition of tempering air; 2—utilize a heat exchanger; 3—cool by radiation; and 4—cool with water spray in conjunction with the admission of tempering air. The advantages and disadvantages of the various cooling methods were: Air Addition: To cool completely by the admission of tempering air involved tremendous volumes, Fig. 1. For example, to cool 1 lb of blast furnace gas at 450°F requires 1.84 lb of air at 80°F or 1.60 lb at 60°F. As it is necessary to design for peak conditions, it can readily be seen that volumes of tempering air in the order of 1,500,000 cfm would have to be handled. Using the normal design figure of 2.5 cu ft per sq ft of bag area, a baghouse installation comprising some 600,000 sq ft of filter cloth would be necessary. Such design requirements would be prohibitive, not only from a standpoint of capital expenditure, but also because of space limitations. Heat Exchanger: The utilization of a heat exchanger was given serious consideration. A horizontal tube unit using air as the medium to cool the required volume of blast furnace gas from 400" to 250°F was investigated. Cooling above 400°F would be done by water spray, and below 250°F by admission of tempering air. The estimated capital cost of such a unit was found to be prohibitive. From an operating standpoint, there was considerable doubt as to whether the soot blowing equipment provided would effectively keep the dust from building up on the tube surface. The performance of heat exchangers operating on dusty gas in other company operations had not been too favorable. Radiation Cooling: Although somewhat cumbersome, gas cooling by radiation from 'trombone' tubes or other similar equipment (cyclones) is employed in many metallurgical operations. Such an installation was also considered. However, calculations showed that an installation much larger than the space available would be required to handle the gas volume involved. For example, to cool 153,000 cfm of blast furnace gas from, say, 600' to 250°F (i.e., remove in the order of 58,500,000 Btu per hr with heat transfer rates varying from 1.1 Btu per sq ft per hr per OF for the higher temperature ranges to 0.88 Btu per sq ft per hr per OF for the lower ranges) would need a cooling area of some 175,000 sq ft.
Citation

APA: R. Bainbridge  (1953)  Extractive Metallurgy Division - Lead Blast Furnace Gas Handling and Dust Collection

MLA: R. Bainbridge Extractive Metallurgy Division - Lead Blast Furnace Gas Handling and Dust Collection. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1953.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account