Extractive Metallurgy Division - Low Pressure Distillation of Zinc from Al-Zn Alloy

The American Institute of Mining, Metallurgical, and Petroleum Engineers
M. J. Spendlove H. W. St. Clair
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
8
File Size:
687 KB
Publication Date:
Jan 1, 1950

Abstract

The problem frequently arises, particularly in refining metals or smelting scrap metals, of separating metals in the metallie state. Many metals may be separated by taking advantage of their difference in vapor pressure. Such separations can be made at atmospheric pressure, but the separations are much more selective and can be carried out at considerably lower temperatures if the distillation is done at pressures of a few millimeters or less in an evacuated enclosure. Until recently, this has not been considered feasible as a metallurgical operation, but the recent improvemcnts that have been made in vacuum technology have broadened the applicability of vacuum processes and have prompted re-examination of low-pressurc distillation of metals as a practicable process. The distillation of zinc from lead is one separation that has already been reduced to practice.l This paper is the first of a series of studies being made on separation of nonferrous metals by distillation at low pressures. Although these experiments were confined to the separation of zinc from aluminum, the significance of the results is by no means confined to these two metals. The purpose has been to investigate a metallurgical technique rather than merely to devise a means of separating specific metals. The experimental work on distillation of zinc from zine-aluminum alloys at reduced pressure grew out of earlier work on distillation at atmospheric pressure.2 The earlier work indicated that it would not be practicable to decrease the zinc in the alloy much below 10 pct owing to the high temperature required. Therefore attention was turned to distillation ah low pressures, at which lower temperatures are required. After preliminary tests were made in a small, evacuated tube furnace, a larger furnace having a capacity of 100 to 150 Ib of metal per charge was constructed. Distillation tests were first made on pure zinc and then on aluminum-zinc alloys of various composition. Particular attention was given to the limit to which zinc could be reduced in the residual metal. Data were also taken on the rate of evaporation, and heat balances were made for both the crucible and the condenser. Distillation Furnace The vacuum-distillation unit is illustrated schematically in Fig 1. The major components are the induction furnace, the condenser, the vacuum system, and the power-conversion unit. Power is supplied to the induction furnace from a 50-kw 3000-cycle motor-driven alternator. The pressure in the furnace is reduced by a vacuum pump having a nominal pumping speed of 10 liters per sec. When in operation, the metal vapors travel upward from the furnace to the water-cooled condenser where they are collected in amounts of 50 to 100 lb. The condenser is removed with aid of an electric hoist. When the system is under vacuum, the condenser is made self-sealing by a rubber gasket between the smooth-faced, water-cooled flanges at the top of the furnace and the bottom of the condenser. The pressure of the atmosphere is more than sufficient to insure sealing. At the conclusion of an experiment, the residual metal can be removed from the furnace by removing the condenser and tilting the furnace with the electric hoist. The metal was cast into the molds carried on a mold truck. A photograph of the furnace and auxiliary equipment is shown in Fig 2. The details of the vacuum furnace are illustrated in Fig 3. The furnace proper is made vacuum-tight with rubber gaskets placed at each end of a fused quartz cylinder. A clamping plate at the bottom and a ring at the top are made to squeeze the rubber between the metal and the end of the quartz tube. A large graphite crucible placed inside the quartz cylinder is thermally insulated and physically supported by refractory insulating bricks. A thermocouple in a quartz protection tube is located at the bottom of the crucible: the leads pass through a rubber seal in the bottom plate. The supporting structure for the furnace is an angle iron frame with transite board sides. The condenser is made in the form of a water jacketed cylinder with an opening to the vacuum line at the top. The bottom has a projecting skirt inside the machined flange to provide additional cooling for the rubber gasket. Condenser sleeves are made in the form of two semicylindrical pieces of sheet metal that fit snugly inside the cooling jacket. The split sleeve facilitates removal of the condensate. Measurement of Temperatare and Pressure The metal temperature was measured by a platinum-platinilm rhodium thermocouple inserted in a well extending up into the bottom of the graphite crucible. During rapid evaporation there is a wide difference in temperature between the surface and the main body of metal in the crucible because of the large amount of heat that must be conducted to the surface to supply the heat of evaporation. The heat of
Citation

APA: M. J. Spendlove H. W. St. Clair  (1950)  Extractive Metallurgy Division - Low Pressure Distillation of Zinc from Al-Zn Alloy

MLA: M. J. Spendlove H. W. St. Clair Extractive Metallurgy Division - Low Pressure Distillation of Zinc from Al-Zn Alloy. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1950.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account