Extractive Metallurgy Division - Preparation of Metallic Titanium by Film Boiling

The American Institute of Mining, Metallurgical, and Petroleum Engineers
A. W. Petersen L. A. Bromley
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
3
File Size:
585 KB
Publication Date:
Jan 1, 1957

Abstract

The van Arkel-deBoer method for producing ductile titanium by thermal decomposition of Til, vapor and deposition on an electrically heated filament is modified by film boiling Til liquid on a heated filament, resulting in similar titanium deposition on the filament and liberation of gaseous iodine. The deposition rate is higher and the energy requirement smaller than in the van Arkel process. Many problems must be solved before the process is commercially feasible. TITANIUM of 99.9 pct purity, called ductile titanium, has been produced by a modification of the van Arkel-deBoer&apos; method. In the van Arkel-deBoer method, an electrically heated wire is suspended from two electrodes, which are placed in a container holding TiI, vapor at a low&apos; vapor pressure (usually <5 mm Hg). The vapor diffuses to the hot wire, usually maintained at 1100" to 1600°C,&apos; and decomposes according to the reaction liberating gaseous atomic iodine and depositing solid crystalline titanium on the wire. Estimations based on the data of Runnalls and Pidgeon,&apos; indicate that the rate-control ling step is the diffusion of atomic iodine away from the wire. There appears to be nearly thermodynamic equilibrium at the wire with TiI, and iodine as the main gaseous species. TiI, is almost certainly an important gaseous species in the cooler regions.&apos; The liberated iodine diffuses to a heated source of crude titanium and reacts to form more TiI, vapor, which again diffuses to the hot wire and completes the cyclic process. The foregoing process may be modified by suspending the hot wire in liquid TiI,, instead of the vapor, and obtaining film boiling. This type of boiling is characterized by the formation of a continuous film of vapor over the wire surface. Since only vapor contacts the wire sul.face, the temperature of this surface may be raised as high as desirable, within the limit of mechanical strength requirements for the wire. By properly adjusting the input voltage. the temperature of the wire may be maintained above U0C"C; and by evacuating the vessel holding the liquid TiI, and maintaining a suitable condenser temperature, the vapor pressure of TiI, may be held low. Thus, the conditions of operation of the van Arkel-deBoer method may be approximated with film boiling; and hence, it is postulated that ductile titanium may be produced by this method. Preparation of Til, There are many methods available for the preparation of TiI,; that used in this research was prepared by the direct reaction of titanium sponge in controlled amounts with liquid iodine. Although no difficulty was encountered with this reaction, it has since been pointed out that this method is sometimes dangerous and should be used with caution. The resulting TiI, was purified by distillation. First Film Boiling Experiments Apparatus: The apparatus shown in Fig. 1 was used for film boiling TiI, on short wire filaments. The current to the filament was supplied through a bank of three 5 kva transformers connected in parallel. The current was controlled by adjusting the voltage over a 0 to 67.5 v range with a 7 kva variable transformer on the low voltage side of the bank of transformers. The current and voltage were measured by Weston meters. The sealed-in-glass tungsten electrodes were hard-soldered to the filament for the film boiling of TiI,. The bottom part of the reactor, containing TiI,, was wrapped with ni-chrome heating wires to maintain the TiI, in the liquid state. An ice or liquid nitrogen trap, for solidifying I, vapor and any TiI, not condensed, was attached to the low pressure side of the air-cooled condenser. A Megavac vacuum pump was used. Procedure: A 0.010 in. diam tungsten filament was hard-soldered to the tungsten electrodes. TiI, was melted (mp 156°C) and poured into the reactor chamber; the top of the reactor chamber, containing the electrodes, was replaced. Freezing of the TiI, was prevented by controlling the current to the ni-chrome wires wrapped around the reactor with a 1 kva variable transformer. The mechanical vacuum pump was started and the system evacuated to about 2 mm Hg TiI, vapor pressure. The current to the filament was turned on and the impressed voltage slowly increased with the variable transformer. A sudden drop in current at nearly constant im-
Citation

APA: A. W. Petersen L. A. Bromley  (1957)  Extractive Metallurgy Division - Preparation of Metallic Titanium by Film Boiling

MLA: A. W. Petersen L. A. Bromley Extractive Metallurgy Division - Preparation of Metallic Titanium by Film Boiling. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1957.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account