Extractive Metallurgy Division - Recovery of Vanadium from Titaniferous Magnetite

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 5
- File Size:
- 346 KB
- Publication Date:
- Jan 1, 1952
Abstract
The recovery of over 80 pct of the vanadium values in titaniferous magnetite from Maclntyre Development,Tahawus, N. Y., was accomplished by an oxidizing roast with Na2O3-NaCI addition. Process description is given for leaching of roasted ore and precipitation of V2O5 and Cr2O8 from leach liquor. THE exploration and development of the Mac-Intyre orebody at Tahawus, N. Y., by the National Lead Co. provided a source of vanadium. Analyses of various composite sections of the drill cores of the MacIntyre orebody were made to establish whether or not the vanadium was constant throughout. Ten drill cores were sampled as 50 ft sections, crushed, and a portion magnetically concentrated. The head and concentrate were analyzed for total iron and vanadium. The results on the concentrates indicated that the vanadium is associated with the magnetite and maintains a close ratio to the iron content. The nominal ratio of 1:25:140 of V: TiO2:Fe was found to exist in the concentrates. Typical value for the vanadium in the magnetite both from laboratory concentration and mill production is 0.4 pct. The recovery of vanadium from the magnetite was investigated in 1942 to 1943. The research program encompassed both laboratory and pilot-plant work on sufficient scale to provide adequate data to establish the feasibility of a full scale plant. The recovery of vanadium from various ores has been reported in the literature and has been the subject of many patents. The literature dealing with recovery from titaniferous ore by roasting is quite limited. Roasting with alkaline sodium chloride, sodium chloride or alkaline earth chlorides, and sodium acid sulphate have been claimed in various processes as effective means.1-8 The reduction of the ore, followed by acid leaching, was another method proposed.'-' "he use of various pyrometallurgical processes for recovery of vanadium in the metal or in the slag has also been extensively investigated, but the results had little application to the problem."-" The separation of vanadium values from subsequent leach liquors and vanadium-bearing solution has been the subject of a considerable number of papers and patents. The most practical is by hydrolysis at a pH of 2 to 3 by acidifying a slightly alkaline solution. Data on solubility of V²O5 and V2O4 in water and in dilute sulphuric acid indicated a solubility of 10 g per liter in water.'" Laboratory Results Magnetite Analysis: Adequate stock of magnetite was provided so that the laboratory and pilot-plant operation was on ore representative of the mill production. The ore was analyzed chemically and examined by petrographic methods to ascertain whether the vanadium was present in combined state or as an interstitial component between grain boundaries. No evidence was obtained which would indicate that the vanadium was in a free state as coulsonite.15 The analysis of the ore was as follows: Fe²O³, 47.4 pct; FeO, 29.1; TiO,, 10.1; V, 0.40; and Cr, 0.2. The screen analysis of the ore on the as-received basis was: -20 +30 mesh, 28.8 pct; —30 +40, 18.9; -40 +50, 9.7; -50 +60, 15.1; -60 4-100, 5.9; -100 + 200, 11.2; -200 +325, 3.7; and -325, 7.2. Roasting Conditions: The prior practice indicated that a chloridizing roast with or without an alkaline salt had been effective on other titaniferous magnetites. On this basis roasts with additions of sodium chloride, sodium carbonate and mixtures thereof were investigated varying the roasting temperature between 800" and 1100°C. Since the ore had shown no segregation or concentration of vanadium, the influence of particle size on the freeing of vanadium by the reagents during roasting was determined. The initial work was on silica trays in an electric resistance furnace with occasional rabbling of the charge. Subsequently, the roasting was carried out in a small Herreshoff furnace to establish the influence of products of combustion on the recovery of the vanadium. The laboratory tests showed that this ore required an alkaline chloridizing roast, in conjunction with a reduction in particle size to less than 200 mesh. When roasted in air at 900 °C with 5 pct NaCl and 10 pct Na2CO³, over 80 pct recovery of the vanadium was attained as a water-soluble salt. The presence of alkaline earth elements gave detrimental effects and care had to be exercised to avoid any contamination of the ore or roast product by such materials. The solubilization of vanadium under the various conditions is given in a series of curves in Figs. 1 to
Citation
APA:
(1952) Extractive Metallurgy Division - Recovery of Vanadium from Titaniferous MagnetiteMLA: Extractive Metallurgy Division - Recovery of Vanadium from Titaniferous Magnetite. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1952.