Extractive Metallurgy Division - Reverse Leaching of Zinc Calcine

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 3
- File Size:
- 281 KB
- Publication Date:
- Jan 1, 1952
Abstract
HE electrolytic zinc plant of the American Zinc Co. of Illinois, at Monsanto, was expanded in 1943 to a capacity of 100 tons of slab zinc daily. This capacity was not attained because of inability of the leaching plant to deliver an adequate amount of solution for electrolysis. Changing the leaching method so that the acid was added to the roasted zinc material reversed the usual procedure and made it possible to attain the desired capacity. The conditions which prevented satisfactory work before this change and the difficulties which arose in reversing the usual leaching procedure are described. The "reverse" leach operation as now practiced is carried out as follows: All the calcine to be leached is fed continuously to a slurry mixing tank. About one third of the acid to be used is fed to the tank with the calcine. The slurry is discharged continuously to a Dorr duplex classifier in closed circuit with a Hardinge mill. The classifier overflow is pumped to any of six leaching tanks where the leach is completed. A finished leach is discharged through Allen-Sherman-Hoff pumps to Dorr thickeners, from which the overflow goes to the zinc dust purification and the underflow to vacuum filters. This change in leaching procedure from the usual one of adding calcine to a large amount of acid made it possible to provide an adequate amount of purified solution to the electrolyzing division and at the same time filter and dry all the residue produced. Operating savings in reagents and better metallurgical recoveries were also important benefits. The original flowsheet of the leaching plant provided leaching, sedimentation of the insoluble residue, and purification of the neutral zinc sulphate solution with zinc dust. The thickened residue was filtered and washed. The purification cake of excess zinc dust, precipitated copper and cadmium, and any insoluble residue was filtered off on plate-and-frame duplex classifier. Settlement in the thickeners was inadequate and the suspended solids in the thickener overflow gave rise to filtration difficulties after the zinc dust purification. Further, the filtration and washing of the leach residue was poor, and it became necessary to pump a large amount of unwashed or poorly washed residue to storage ponds outside the plant building. Two causes of the poor settling and filtration were determined: Soluble silica and ferrous iron in the calcine treated. The latter was a result of poor roasting and with more experience ceased to be a major problem. The silica was a normal constituent of the feed and the working out of the problem became a matter of controlling its solubility. The obvious method to render the silica insoluble was by intensive roasting. This, however, met with total failure as such roasting resulted in silicates, probably zinc, soluble in the 13 pct acid used for leaching. Attempts were made to coagulate the fine gelatinous slime with addition agents. Glue, lime, starch, beef-blood serum and others were tried without success. All the suggested tried-and-tested means of operating the thickeners gave no consistently good results. Variations in leaching time, in addition of calcine to the leaching tanks, "conditioning" of the pulp by prolonged agitation, immediate discharge of the leach upon completion to avoid breaking up flocs were all tried and given up as ineffective. Byron Marquis, of Singmaster and Breyer, worked with the plant staff on a beaker scale until a leaching procedure was developed which gave consistent results and a promise of overcoming the difficulties which had plagued the plant operation. It was suggested that the difference in solubility of silicates and zinc oxide in sulphuric acid could be made use of in a leaching method where the acidity was controlled carefully. Such control is possible when acid is added to a slurry of calcine. This process reverses the normal procedure of adding calcine to a vessel of acid, hence the term "reverse leach" was applied. In this way, the overall acid concentration can be kept very low. In the tests made, it did not exceed 0.05 g per liter free sulphuric acid. Numerous advantages were realized when no silicates were taken into solution and later precipitated as a bulky gel. The gel had made reasonable thickening and filtration of the leach pulp and practical drying of the residue impossible. When the gel was eliminated, thickening rates were increased as much as five times. The volume of residue after thickening represented about 10 pct of the total leach pulp and had been as high as 95 pct when the gel was present. The thickened pulp was filterable and the filtered cake was dried readily after washing. The zinc extraction from the calcine was slightly lower. This was more than compensated for by the increase in zinc recovered in solution from zinc which had been trapped in the gelatinous residue. The amount of copper recovered was lower. However, the amounts of other impurities, such as arsenic, antimony, and germanium, taken into solution were lower. This was particularly true of antimony. Since the inception of reverse leaching, no concentrates have failed to yield solutions free of antimony even when present in the calcine to the extent of 0.2 to 0.3 pct. Oxidation of ferrous iron is a problem of reverse leaching. Ferrous hydrate does not precipitate at pH 5.3 to 5.4 where a leach is finished. The usual oxida-
Citation
APA:
(1952) Extractive Metallurgy Division - Reverse Leaching of Zinc CalcineMLA: Extractive Metallurgy Division - Reverse Leaching of Zinc Calcine. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1952.