Extractive Metallurgy Division - Separation of Copper from Zinc by Ion Exchange

The American Institute of Mining, Metallurgical, and Petroleum Engineers
Ernest J. Breton Jr. A. W. Schlechten
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
5
File Size:
353 KB
Publication Date:
Jan 1, 1952

Abstract

Experiments on the separation of copper and zinc ions by selective action of ion exchange resins showed the carboxylic type to be more effective than the sulphonic resins. The latter demonstrated a greater capacity over a wider pH range. Data show the effectiveness of resins as a means of concentration. IN recent years the restrictions of stream pollution laws and the high price of metals have created an interest in ion exchange as a means for metal recovery. Some applications have proved successful. In Germany during World War 11, 17 tons of copper per day were recovered from rayon mill wastes by means of ion exchange resins;' and for some time in this country a large ion exchange unit has been in operation for the recovery of copper from rayon waste water. The possibilities of applying ion exchange to the recovery of metals occurring in plating rinse water is particularly promising. In most of these applications only the metal being recovered occurs in the waste. The ion exchange resins act merely as a means of concentrating the metals to a point where they can be recirculated. It would be highly desirable to use ion exchange as a means of not only concentrating but also of separating metals. With the exception of the impressive separations accomplished in connection with the atomic energy program, very little has been done on metal separations.' Therefore, an investigation was undertaken at the Missouri School of Mines and Metallurgy to determine if either of the two main types of ion exchange resins could be used to separate metal ions in solution. The selective removal of copper ions from a mixture of copper and zinc on carboxylic and sulphonic-type resins was investigated as a function of flow rate, pH, copper-zinc ratio, and concentration. It was shown that zinc can be separated from copper and that very large ratios of concentration can be obtained using ion exchange resins. Since ion exchange is relatively new to the field of metallurgy, a brief review of the subject will be included. Theory of Ion Exchange A comprehensive theory for ion exchange has not been developed as yet, but the mechanisms are analogous to metathetical reactions: R Na + Cu++ *=? K(SO3)2 Cu + 2Na+ R is the designation for the ion exchange resin. If a copper solution is passed over a resin bed in the sodium form, two ions of sodium will be released for every ion of copper removed. For the most part this reaction follows the laws of mass action and of electrical neutrality. Consequently, if an excess of sodium ions is passed over a bed containing copper, the reactions will be reversed, and the resin will be regenerated to its original form. A few empirical rules governing the exchange reaction have been set forth: 1—In general ions with a high valence will replace ions with a lower valence. 2—Ions having higher activity coefficients have a higher replacement potential. 3—In a series of mono-valent ions, those with the smallest radii of hydra-tion will tend to replace those having larger radii of hydration. 4—Where ions are similar in most respects, those with the higher atomic weight sometimes will take precedence. This last rule is not as definite as some of the others. These rules apply to rather dilute solutions at moderate temperatures and assume all ions to be present in about equal concentrations. Higher concentrations and temperatures may in some cases reverse the normal exchange reactions. Ion exchange materials are unique in that their efficiency increases as the concentration of the solution decreases. For many exchangers, most efficient operation is obtained at concentrations in the order of one thousandths of a percent. Most applications, though, are made in solutions containing considerably higher concentrations than this. Coste9 as shown that ion exchange resins will remove aluminum and iron effectively' from solutions of up to 10 pct chromic acid. Ion Exchange Resins Ion exchange resins are insoluble, porous, resinous structures to which active groups have been attached. Active groups such as (—SO,,)- and (COO)- pick up cations; hence structures saturated with groups such as these are called cation exchangers. Structures saturated with groups such as (—NH,)' which pick up anions, are referred to as anion exchangers. The resinous structure of necessity is resistant to strong acids, bases, oxidizing, and reducing agents, and most of the common organic solvents. An idea of the stability can be gaged from the fact that resins last for many years under constant use without detectable chemical or physical breakdown. The ion exchange reaction is not confined to the surface of these synthetic resins. Its porous structure permits active groups in the center of a particle as well as those on the surface to remove ions. A high capacity resin such as Amberlite IR-120 will remove up to 3.3 lb Cu per cu ft of resin. In this investigation several approaches to the problem of separating copper from zinc by ion exchange were considered. First, if a reagent could be found which would complex one of these metals and not the other, then by passing this reagent through a bed of exchanger containing copper and zinc, the
Citation

APA: Ernest J. Breton Jr. A. W. Schlechten  (1952)  Extractive Metallurgy Division - Separation of Copper from Zinc by Ion Exchange

MLA: Ernest J. Breton Jr. A. W. Schlechten Extractive Metallurgy Division - Separation of Copper from Zinc by Ion Exchange. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1952.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account