Extractive Metallurgy Division - Sintering Zinc Concentrates on the Blackwell 12 by 168 Ft Machine

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 3
- File Size:
- 134 KB
- Publication Date:
- Jan 1, 1954
Abstract
THE Blackwell Zinc Co., Inc., a subsidiary of the American Metal Co., Ltd., operates a horizontal retort zinc smelter at Blackwell, Okla. The plant has 14 furnace blocks of 800 retorts each, fired with natural gas on a 48 hr cycle. Over 13,000 tons of zinc-bearing material, chiefly sulphide flotation concentrates, are treated monthly to produce slab zinc and high lead-cadmium fume. In 1942 a program of rebuilding and modernizing the smelter was started. By 1947 furnace smelting capacity had been increased to a point where roasting and sintering facilities were inadequate, and it was necessary to purchase oxidized materials to supplement sinter production. The seven 210 ft Ropp roasters and three 42 in. x 44 ft Dwight-Lloyd machines then in use had been in service at least 20 years and were in need of major rebuilding. Thus it was entirely practical to consider all new equipment and a change of method rather than rebuilding and repairing obsolete units. A study of the problem indicated that roasting as such could be eliminated and roasting and sintering accomplished in one step by a modification of the Robson process,' which had been used since the early 1930's by the National Smelting Co., Ltd., at their plants at Avonmouth, England, and Swansea Vale, South Wales. Francis P. Sinn, General Manager, Zinc Smelting Operations, The American Metal Co., Ltd., who was familiar with the practice in England, suggested the use of one large machine for the entire operation from concentrate to sinter. One step sintering appeared to best meet Blackwell's plant requirements and indicated substantial savings in labor, gas, coal, and repair costs. Choice of Machine Size The sinter machine size was set at 12x168 ft for a rated capacity of 540 tons per day. This tonnage, produced on a five day week, would meet the seven day requirements of the 14 furnace blocks. The one large machine was quoted at a lower cost than two or more 6 ft wide machines of similar total capacity. Further, the larger machine could be housed in a smaller structure and only one set of equipment for charge preparation and delivery and for disposal of sinter cake was needed. One machine on a five day week made possible a concentration of the skilled operating personnel and required less men than a plant including two or more machines and related equipment circuits. Fewer units of equipment meant less maintenance, and the two down days weekly allowed ample time to repair and, if necessary, to make up lost production. Experience had indicated better sintering quality and rates with larger masses of material, not only on wider machines, but also in deeper beds. The ratio of windbox perimeter to area for the 12x168 ft machine is 0.179, compared to 0.353 for a 6x102 ft machine and 0.617 for a 42 in. x 44 ft machine. This meant less air leakage with resulting fan power savings and less spoilage of charge along the pallet sides. Performance Initial operation of the new sinter plant was made in November 1951 and regular production attained late in December. The average product sinter output during 1952 and the first half of 1953 has been 18.2 tons per hr. The average for one month has been as high as 22.4 tons per hr. Considerable experimenting with varied operating conditions accounts in part for the below capacity — 24 tons per hr — average output, and work to further improve production rate continues. A typical sinter analyses is 66.0 pct Zn, 0.3 pct Pb, 0.1 pct Cd, 0.3 pct S, 8.0 pct Fe, 2.0 pct SiO,, 0.8 pct CaO, and 0.2 pct MgO. Use of this material has made possible increases in furnace burden and improved furnace operation over the former practice using sinter made from Ropp roasted concentrates. Better lead and cadmium elimination in sintering has permitted the furnace production of slab zinc lower in lead and cadmium. Anticipated economies of operation have largely been gained. The sinter plant is operated by seven men per 8 hr shift — one head operator, three equipment operators and three sweepers — plus one oiler on day shift only. While it has been necessary at times to operate seven days a week to produce the required sinter tonnage, the five day work week usually has been adequate. Consumption of natural gas for sinter bed ignition is 200,000 to 300,000 cu ft per day. Green Ore Sintering Practice The 30 to 31 pct sulphur content of the —200 mesh zinc concentrates is the fuel used to sinter the charge, no coal addition being required. In the feed to the machine, sufficient concentrates are added to crushed return sinter fines containing 0.3 to 0.5 pct sulphur to produce a charge averaging 5.0 to 6.5 pct sulphur. Since the return sinter used in Blackwell's practice is varied from — 1/2 to — 1/8 in., the actual sintering mixture of fine sinter and concentrates is somewhat higher in sulphur. The coarser sinter particles are too large to resinter and merely aid porosity in the sinter bed. The ratio of concentrates to return sinter in the charge ranges from about 1:4 to 1:5.5. Variations are based on the appearance of pried up bed sections, bed exit gas temperature trends, windbox suctions, and return sinter size. Sufficient sulphur must be used to obtain fritting of the charge into a soft sinter cake and to aid in the elimination of lead and cadmium. Excessive feed sulphur will result in partial slagging of the cake impairing porosity and prolonging sintering time.
Citation
APA:
(1954) Extractive Metallurgy Division - Sintering Zinc Concentrates on the Blackwell 12 by 168 Ft MachineMLA: Extractive Metallurgy Division - Sintering Zinc Concentrates on the Blackwell 12 by 168 Ft Machine. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1954.