Extractive Metallurgy Division - The Effect of High Copper Content on the Operation of a Lead Blast Furnace, and Treatment of the Copper and Lead Produced

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 2
- File Size:
- 184 KB
- Publication Date:
- Jan 1, 1950
Abstract
When we speak of high copper on a lead blast furnace we think in terms of 4 to 5 pct, or. any lead charge carrying over 1 pct. Any copper on charge will produce its corresponding troubles such as lead well, extra slag losses, drossing problems, and the working up of the dross. This is indeed a very interesting subject and one that used to give the old-time lead metallurgists such as Eiler, Hahn and lles many worries, not so much in the actual operation of the hlast furnace but in the working up of the copper. When the American nletallurgists commenced with the American rectangular-shaped lead blast furnace in the 1870's and got away from the reverberatories such as were in use in Germany and other parts of the world, they went to greater tonnages, as 80 to 100 tons per day in comparison to the 20 to 30 tons per day in the other processes. With the greater tonnages along with insuficient settling capacity, the silver losses in some cases were increased. Hence the lead-fall was low, for there were no leady concentrates in those days to assist the metallurgist to gain lead or an absorber for the precious metals; and in some cases copper sulphides were added intentionally to the charge to produce a copper matte to lessen the silver losses through the dump slag. The operators in those days thought that where some copper was always present in the lead ores the copper should not enter into the reduced lead and alloy with it. This, by the way, is just the reverse of our present-day practice, when we try to put all of the copper into the blast furnace lead and to remove the same through the drossing kettles. Therefore the furnace was operated to produce a certain amount of matte or artificial sulphides, since, due to the great affinity of copper for sulphur, any copper present would enter the matte almost completely. Thus, the lead bullion produced was practically free from copper. The products of the furnace were metallic lead or lead bullion, containing 05 to 95 pct of the lead and about 96 pct of the silver which were in the ore—a lead-copper-iron matte which contained nearly all the copper in the ore and the slag, the waste product. In the United States, up through the year 1092, we find the small furnace 100 X 32 1/2 in. with 12 tuyeres, some 6 on each side, plagued with a small amount of poorly roasted sulphides— either from heap or hand roasters that produced matte. This matte was roasted and if poor in copper was returned for the ore smelting. Otherwise it was smelted either alone or with additions of rich slags or argentiferous copper ores, the products being lead and a highly cupriferous matte, the latter being subsequently worked up for its copper. The lead metallurgists kept trying and improving on furnace and roasting equipment designs until we find blalvin W. Iles constructing at the old Globe Plant at Denver what came to be the modern furnace. That is, in 1900 he built a furnace of 42 in. width by 140 in. at the tuyeres with a 10 in. bosh and a 16-ft ore column. This type has been more or less standard to the present time, though modified in width and length to meet the demand for large tonnages and improvements in structural details. In 1905 at Cananea, Mexico, Dwight and Lloyd developed the present down-draft sinter machine that has meant so much in producing a well-processed material for the lead blast furnace. In 1912 Guy C. Riddell came forth with double roasting at the East Helena Plant of the American Smelting and Refining Co., which removed the "zinc mush plague." Incidentally, with the introduction of double roasting, which most lead plants were forced into after 1924, when lead flotation came into its own, less matte or no matte was produced. When this stage arrived, the copper was forced into the dross and the casting of lead at the blast furnace lead-wells was stopped. In plants with a fair copper carry 1 pct or better on the blast furnace charge, the lead wells became inoperative once the production of matte stopped. The copper drosses clogged the lead wells and even with bombing, either water or dynamite, the operators could not keep them open. Thus, the lead wells were abandoned in some plants, such as at the El Paso and Chihuahua smelters of the American Smelting and Refinillg Co., and all lead taken out through the first settlers. The elimination of sulphur, espccially sulphide sulphur, from the blast furnace charge and the nonproductiori of matte resulted in a great saving of tinie, energy and equipment in the recirculation of the copper, With the copper content in the dross and dross-fall ranging in quantities from a few percent up to 60 pct, such as at El Paso, a drossing problem was created. As the old-time operators hated dross and buried the same in the shipping bullion, the modern metallurgists from 1925 on decided that with increasing dross-falls they would have to adopt the lead refiner's ideas of drossing kettles with subsequent treatment of the lead with a sulphur addition to have the shipping lead of 0.01
Citation
APA:
(1950) Extractive Metallurgy Division - The Effect of High Copper Content on the Operation of a Lead Blast Furnace, and Treatment of the Copper and Lead ProducedMLA: Extractive Metallurgy Division - The Effect of High Copper Content on the Operation of a Lead Blast Furnace, and Treatment of the Copper and Lead Produced. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1950.