Extractive Metallurgy Division - The Influence of Solid State Point Defects upon Flotation Processes

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 3
- File Size:
- 220 KB
- Publication Date:
- Jan 1, 1963
Abstract
It was hypothesized that solid-state point defects should alter the flotation properties of solids. Tests conducted on pure AgCl and AgCl doped with CdC12 show that atomic point defects exhibit an important role in the floatability of AgC1. Tests conducted on PbS doped with Ag2s or Bi2S3, also show that the defect structures resulting from these dope additions, i.e., a combination of electronic and atomic point defects, contribute significantly to the flotation of PbS. IT has been established that flotation occurs only when a finite contact angle exists between a solid and a gaseous bubble.' This angle, measured through the liquid phase, is expressed by the equation where the are inter facial free energies and the subscripts S, G, and L represent solid, gas, and liquid phases, respectively. As is seen in Eq. [I] three interface free energies, sG, sl, and GL, enter into the contact angle equation. Therefore, any variation in these energies which sufficiently varies the contact angle will, in turn, vary flotation processes. Changes made in any of the phases concerned, i.e., gas, liquid, or solid phase, are reflected through the changes occurring in two of the surface energy terms. Thus, a change in the liquid composition would be noted in sL and GL, and it is this phase, the liquid, which is most frequently altered in flotation studies., Changes in the solid phase must be reflected through the changes occurring in the sG and sL terms. In particular, it is hypothesized that changes in the surface concentrations of point defects in the solid-phase will alter the sG and sL terms which, in turn, will be reflected by flotation results. As an illustration of this hypothesis one may consider the defect structure and the flotation of AgC1. The bulk defect structure of AgCl is essentially one involving equal number of cation vacancies and interstitial cations.3 Upon adding CdC1, to AgC1, a greater number of silver ion vacancies are created in the bulk of the crystal.4 On the surface of the crystal the smaller binding forces and the free space accomodations may also allow for the creation of "surface interstitial anions", which will be designated as ad-anions. Thus, the point defect structure of the surface of AgCl doped with CdCl, will consist of cation vacancies and/or adanions. If the molecular forces responsible for the surface energies, ?SG and ?sL, are significantly altered by the presence of these surface point defects, then differences in flotation results will be noted as the concentration of these defects is varied. The defects present in AgCl are predominantly atomic in nature. In the case of PbS both electronic and atomic defects are present.5 This compound conducts electrically by either electrons or electron holes depending upon whether excess lead or excess sulfur is present. Upon disolving BiS3 in stoichio-metric PbS, one increases the concentration of cation vacancies and the number of electron carriers in the bulk of the crystal.5" At the surface, the possibility of ad-anions must also be considered. Conversely, upon dissolving AgS in stoichiometric PbS one increases the concentration of interstitial cations and the number of electronhole carriers in the bulk of the crystal.5,6' At the surface the interstitial cations will be designated as ad-cations. Thus, the point defect structure of the surface of a PbS crystal doped with Bi2S3 will consist of a number of cation vacancies and/or ad-anions and an excess of electrons. Conversely the point defects on the surface of a PbS crystal doped with Ag2S will consist of a number of ad-cations and an excess of electron holes. Again, as in the case of AgC1, should the molecular forces responsible for the magnitude of the interface free energies, ?sG and ?sL, be significantly altered by the presence of these surface defects then significant differences in flotation results will be noted as the concentration of these defects is varied. EXPERIMENTAL To test this hypothesis flotation tests were conducted on pure and doped AgCl and on PbS doped with either Bi2S3 or Ag2S. Preparation of the AgCl samples was performed as follows: AgCl and weighed amounts of CdC1, were melted in a porcelain crucible. The melt was then forced through a capillary tube and the particles emitted solidified in air as they fell about 1.5 meters. Spherical particles, -0.50 + 0.25 mm, were separated from the remaining solidified material
Citation
APA:
(1963) Extractive Metallurgy Division - The Influence of Solid State Point Defects upon Flotation ProcessesMLA: Extractive Metallurgy Division - The Influence of Solid State Point Defects upon Flotation Processes. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1963.