Extractive Metallurgy - The Recovery of Cadmium from Cadmium-copper Precipitate, Electrolytic Zinc Co. of Australasia, Risdon, Tasmania - Discussion

The American Institute of Mining, Metallurgical, and Petroleum Engineers
G. H. Anderson
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
3
File Size:
89 KB
Publication Date:
Jan 1, 1950

Abstract

H. R. HANLEY*—I have been asked to discuss briefly the development of rotating cathodes for the electrolytic deposition of cadmium. The earliest recorded use of rotating cathodes was by Hoepfner at Frufurt, Germany about sixty years ago. He elec-trolized zinc chloride solution using diaphragms to separate electrodes. In the early experimental work of the Bully Hill Copper Mining and Smelting Co., Shasta County, Calif., rotating aluminum cathodes 4 ft in diam were used in the electrolysis of an acid zinc sulphate solution. Finished cathodes weighing up to 400 lb were produced. Because of mechanical difficulties, this type of cathode was abandoned for zinc, but was later used for cadmium because of the relative smoothness of deposit in comparison with stationary plates with comparable current densities. Cadmium sponge which forms on the cathode at moderate current densities (without special treatment) is entirely eliminated by a slow rotation. The rate of rotation of the cathode has an effect on the mechanical nature of the deposit. A high rate of rotation concentrates the adhering electrolyte on the shaft; a moderate rate appears to concentrate on the cathode a short distance out from the shaft tending to corrode the deposit in the form of a ring. At a very slow rotation (2 to 3 rpm) the adhering electrolyte gravitates nearly vertically, thus avoiding the cutting ring referred to above. The true explanation for the smoother deposits obtained on rotating cathodes may not be given definitely as the numerous factors involved are not thoroughly understood. Smooth deposits are obtained when the orderly growth of the metal crystals in the cathode lattice are disorganized. Thus the crystals form and grow for a very short interval when they are arrested and a new crystal forms. The continued growth of the original crystals provides large crystals and a rough deposit. Also if the acidity of the electrolyte is low, hydrogen gas bubbles adhere to the deposit. As the cathode is rotated the gas surface is brought into the atmosphere where they burst; thus the deposit is made on a surface relatively gas-free. An aluminum hub distance piece was riveted to each aluminum disk 4 ft in diam, slipped on a 4 1/2 in. steel shaft and pressed tight to prevent acid electrolyte seeping through to the shaft. The 9-cathode assembly was supported on insulated bearings. Electrical contact to the shaft was made through what was equivalent to a copper pulley. Sufficiently high conductivity brushes were placed on the face of the pulley to lead the current to the cathode bus bar. The assembly was driven by a link belt contacting a sprocket insulated from the shaft. The lead anodes were semicircular and supported on porcelain insulators placed on the bottom of the cell. Two anodes were provided for each cathode to permit an 8-in. space between them without increasing the ohmic resistance. This ample spacing permitted easy stripping of deposit with the assembly in place. Cathode cadmium was melted under 650 W cylinder oil. After casting, the primary slabs were remelted under molten caustic soda and cast into pencils 1 1/32 in. in diam. Rotating cathodes for deposition of cadmium are used at Risdon, Tasmania, and at Magdeburg, Germany. W. G. WOOLF*—This paper is very-interesting to me because in our work at the Electrolytic Zinc Plant of the Sullivan Mining Co. we had an exactly similar problem—that is, a method of producing cadmium from our purification residue, the recovery of the contained copper as a copper precipitate which could be sent to a copper smelter and the production of merchantable cadmium. It is interesting to me, not knowing of the work of the Risdon people, how closely we approximate them in their main metallurgy, diverging at several interesting steps which I would like to discuss for just a moment. For example, at Risdon they oxidize their purification residue. In our practice we take the current residue as it is produced in the purification department of the zinc plant and process it in the cadmium plant. The only oxidation that it obtains is the oxidation in the presses, the dumping of the presses and the collection and transportation of the residue to the cadmium plant. We find that the leaching of that residue does not necessarily require the oxidation step that the Risdon people evidently find necessary. The discussion of oxidation comes in again in the matter of the treatment of the precipitated cadmium sponge with zinc dust which again at Risdon is oxidized but which we do not attempt to oxidize except as it oxidizes itself in the storage. There is a partial oxidation which cannot be avoided, as Mr. David-sou pointed out, but we make no attempt to attain a complete oxidation and we dissolve the cadmium sponge in the sul-
Citation

APA: G. H. Anderson  (1950)  Extractive Metallurgy - The Recovery of Cadmium from Cadmium-copper Precipitate, Electrolytic Zinc Co. of Australasia, Risdon, Tasmania - Discussion

MLA: G. H. Anderson Extractive Metallurgy - The Recovery of Cadmium from Cadmium-copper Precipitate, Electrolytic Zinc Co. of Australasia, Risdon, Tasmania - Discussion. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1950.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account