Fluid Injection - Properties of Linear Water Floods

The American Institute of Mining, Metallurgical, and Petroleum Engineers
L. A. Rapoport W. J. Leas
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
10
File Size:
796 KB
Publication Date:
Jan 1, 1953

Abstract

The original Burkley-Leverett theory has been extended and a more detailed formulation of the waterflood behavior in linear horizontal systems is presented. Particular consideration has been given to the evaluation of capillary pressure effects and differential equations permitting an explicit evaluation of these effects have been derived. On the basis of the developed theory it is recognized that the flooding behavior is dependent upon the length of the system and the rate of injection. At the same time it has been determined that systems of different lengths yield the same flooding behavior if the injection rates and or the fluid viscosities are properly adjrrsted or "scaled." It has also been found that the sensitivity of the flooding behavior with respect to rate and length decreases as any one of these {actors increases in value and that for sufficiently long systems and high rate.; of water injection the flooding behavior becomes independent of rate and length. or "stabilized." To such stabilized conditions the theory formulated by Buckley and Leverett is applicable. A number of laboratory flooding tests have been made and good agreement Iraq been found between theory and experimental observations. The experimental results are discussed and it is shown that under field conditions the flooding behavior is usually stabilized. As a result of these finding; a procedure is indicated for evaluating field performances either on the basis of tests performed with commonly available core samples or by means of calculations using relative permeability data INTRODUCTION In recent years the development of methods for evaluating oil recovery by waterflooding has been the object of considerable research. A theoretical analysis of the mechanisms involved in the displacement of immiscible fluids was originally established by Buckle!- and Leverettl and experimental investipatio~~s have been made by numerons workers." Many of the experimental results are in mutual agreement and bear out several significant features of the flooding mechanism as predicted by theory. Thus it lias been generally recognized that a flood corresponds to the movement of a steep saturation hank or "front" (primary phase), followed by additional gradual oil displacement (subordinate phase). It has also been found that for any porous medium the flooding behavior is largely dependent upon the oil-water viscosity ratio and that for increasing values of this ratio the relative importance of the primary displacement phase decreases while that of the subordinate phase becomes more pronounced. Although the studies to date have clarified certain aspects of the flooding process. they have given rise to observations of a somewhat contradictory nature that cannot he explained in terms of the original theory. These observations pertain mainly to the effect of injection rate or pressure gradient upon recovery. Some investigators report laboratory tests that indicate incresing oil recoverieq with increasing rates of water injectill, others find the flooding behavior to be independent of and other. mention lower oil recoveries with increased injection rates.3 The conflicting evidence indicated above creates considerable uncertainty with respect to laboratory testing procedures and the utilization of the resulting data for field evaluations. The principal purpose of this paper, then, is to resolve these Uncertainties by means of a comprehensive theoretical and experimental investigation of the flooding meanism. THEORETICAL DEVELOPMENT Derivation of Flooding Equations The mathematical description of transient flow phenomena is based upon the consideration of the various processes occurring during an infinitesimal time interval in an infinitesimal volume element and upon the correlation of these processes with those occurring in the adjacent elements. The volume elements are defined as being infinitesimal in comparison to the overall dimensions of the porous system, yet each sufficiently large so aS to encompass the full range of pore openings encountered throughout the system. If a porous system can arbitrarily be subdivided into an infinite number of volume elements all possessing the same distribution of pore openings and if this distribution is unformly continuous. the system may be said to be homogeneous. Such a homogeneous porous medium is considered in the present studivs. It is furthermore postulatecl that only oil and water are present in the pornu wediu. that they act a- totally incompressible and immiscible fluids. and that gravity effects are negligible. In n linear flow system of unit cross sertional area. as treated here. the infinitesimal volume element.; to he considered are cylindrical ".slices" of thickness dx. oriented perpendicularly to the direction of flow. The equations applicable to any such volume element. at my time. describe the movement. of oil and water across the element:
Citation

APA: L. A. Rapoport W. J. Leas  (1953)  Fluid Injection - Properties of Linear Water Floods

MLA: L. A. Rapoport W. J. Leas Fluid Injection - Properties of Linear Water Floods. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1953.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account