Formation Stabilization In Uranium In Situ Leaching And Ground Water Restoration

The American Institute of Mining, Metallurgical, and Petroleum Engineers
T. Y. Yan
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
8
File Size:
397 KB
Publication Date:
Jan 1, 1982

Abstract

SUMMARY Laboratory high pressure column tests have shown that the presence of 1-20 ppm of aluminum ion effectively prevents permeability loss during uranium leaching with leachates containing sodium carbonate. If added after permeability loss has occurred, aluminum ion can restore the permeability to nearly its original value. No deleterious effect was observed on uranium leaching performance and the technique should be quite compatible with all field operations. INTRODUCTION The recovery of uranium values from underground deposits by in situ leaching or solution mining has become economically viable and competitive with conventional open pit or underground mining/milling systems (Merrit, 1971). In situ leaching processes are particularly suitable for small, low-grade deposits located in deep formations and dispersed in many thin layers. Many such ore bodies occur along a broad band of the Gulf Coastal Plain (Eargle et. al., 1971). The advantages of the in situ leaching processes have been reviewed (Anderson and Ritchi, 1968). In the in situ leaching process, a lixiviant containing the leaching chemicals is injected into the subterranean deposit and solubilizes uranium as it traverses the ore body. The pregnant lixiviant or leachate is produced from the production well and is then treated to recover the uranium. The resulting barren solution is made up with the leaching chemical to form lixiviant for re-injection. Upon completion of the leaching operation, the formation is contaminated with leaching chemicals and other species made soluble in the leaching operation and has to be treated to reduce the concentration of these contaminants in the ground water to levels acceptable to the regulatory agencies (Witlington and Taylor, 1978). Restoration is accomplished by injecting a restoration fluid, which could be the fresh water or water containing chemicals, into the formation. As it traverses the leached formation, the restoration fluid picks up the contaminants and is then produced at the production well. This produced water is either disposed or purified for recycle. In both phases of operation, formation permeability or well injectivity is one of the most important parameters which determines the viability of the in situ leaching process. Low formation permeability limits production rates, leading to uneconomical operations. The formation is said to be sensitive if there is a sharp loss of permeability on contact with water and other fluids. Many uranium bearing formations, for example, the Catahoula formation of the Texas Coastal Plain, contain significant amounts of clay minerals which are water sensitive. Serious permeability losses can occur when the pH and chemical composition of the lixiviant is significantly different from that of the formation water. Jones has investigated the influence of chemical composition of water on clay blocking of permeability (Jones, 1964) and Mungan studied permeability reduction through changes in pH and salinity of the water (Mungan, 1965). Various mechanisms of permeability damage have been proposed and reviewed (Jones, 1964; Mungan, 1965; Gray and Rex, 1966; and Veley, 1969). When large amounts of swelling clays are present, a significant fraction of the flow channels in the formation can be reduced due to swelling. However, in most cases, swelling need not be the main cause of permeability losses. Particle dispersion and migration or clay sliming can be more important causes for formation damage. Clay particles entrained in the moving fluids are carried downstream until they lodge in pore constrictions. As a result, microscopic filter cakes are formed by these obstructions, plugging the pores, effectively restricting fluid flow and reducing the formation permeability. Moore found that as little as 1-4 percent clays present in a fine grained sandstone could completely plug the formation if they are contacted by incompatible injected fluids (Moore, 1960). It has been found that injection of NaHC03/Na2CO3 lixiviant into formations with significant clay content often leads to loss of formation permeability and well injectivity. To alleviate this problem a change of the lixiviant composition to KHC03/K2CO3 has been proposed. At present, however, many in situ leaching operations employ NH4HC03/(NH4)2C03 mixtures as a source of carbonates. This approach has been successfully used in South Texas by Mobil, Intercontinental Energy, Wyoming Minerals and U.S. Steel, etc. The use of ammonium carbonates solutions, however, contaminates the formation and requires a time-consuming restoration operation. The other approach to reduce the permeability loss is to pretreat the sensitive formation with chemicals which prevent clay dispersion and migration. Such chemicals include hydroxy-aluminum (Reed, 1972 and Coppel et. al., 1973), hydrolyzable zirconium salts (Peters and Stout, 1977), hydrolyzable metal ions in general (Veley, 1969) and polyelectrolyte polymers (Anonymous). Still another approach, is to minimize the "shock" caused by sudden injection by gradually changing the chemical composition of the injected fluids from that of the formation water. THE APPROACH Since permeability loss can be an important factor limiting the efficiency and economic viability of the in situ leaching process, a study was initiated on
Citation

APA: T. Y. Yan  (1982)  Formation Stabilization In Uranium In Situ Leaching And Ground Water Restoration

MLA: T. Y. Yan Formation Stabilization In Uranium In Situ Leaching And Ground Water Restoration. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1982.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account