Geological Engineering - A Curricular Outcast?

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 2
- File Size:
- 179 KB
- Publication Date:
- Jan 1, 1952
Abstract
ENROLLMENT in geological and mining engineering curricula is declining at an accelerated rate despite the greatest need for trained men ever extant in the minerals industry. Industrial and military demand is mounting, but the number of freshmen selecting the mineral field continues to fall. Estimates on the needs of industry range as high as 30,000 new engineers a year. The current deficit is more than 60,000 engineers less than the 350,000 to 450,000 which eventually will be needed. The indisputable fact is that the colleges are turning out fewer and fewer engineers despite the greatest enrollment in colleges and universities ever experienced in the United States. In 1950 a record 52,000 young men stepped out of the confines of ivy covered walls with engineering degrees in their hands. By 1951, however, the number dropped to 41,000 and present enrollment indicates a national graduating class of only 25,000 for 1952. No letup in the drop is forecast. About 19,000 can be looked for in 1953 and 1954 may reach an unhappy 12,000. It becomes clear that something must be done to attract high school graduates to engineering. One immediate possibility could be to make the course burden carried by the engineering student somewhat lighter. The prescribed curriculum in many schools is such that the student takes the path of least resistance, and instead of training for an engineering future, studies for a vocation which will allow him to learn and at the same time get at least a nominal enjoyment out of college life. Review geological and mining curricula of 20 colleges and it will be found that the engineering student is a veritable pack mule compared to a lad taking liberal arts or some other non-technical program of study. The curriculum for geological engineering at one school calls for 202 semester hr, with almost 23 hr carried per semester. Multiply this figure by three hr, the minimum supposedly to be devoted to a credit and you get 69 hr per week. With a bare minimum of 84 hr for sleeping and eating, about two hours a day remain for recreation. However, the load of other schools investigated is about 19 hr. The University of Utah requires 238 quarter hr for graduation with a degree in geological engineering, while requiring only 183 quarter hr for baccalaureate degree from University college, Utah's liberal arts school. It can be stated with a measure of surety that the same proportions exist in other universities. The first step would be for ECPD to review its requirements for mining and geological engineering. It must recognize that mining and geological engineers operate in a specialized field, as do other types of engineers. Although a geological engineer may not design a bridge, as pictured by the ECPD Committee on Engineering Schools, his field of design calls for similar engineering precision, a knowledge of materials, construction methods, economic considerations, and financing. Six schools have been accredited by the ECPD. What is the basis for approval and can the requirements be modified and still be kept in line with the needs of the geological engineer? Course work from school to school varies with the exception of mathematics, chemistry, and physics. Even in those courses the not inconsiderable variation lends dubious creditability to the mean. One accredited school requires 7 1/3 semester hr of chemistry, compared with 24 hr required by another, making an average for the six schools of 17 1 /3 hr. Required credit hr in mechanics ranges from 4 to 18 and in surveying from 2 to 15. Several non-accredited schools require more hr than do the accredited schools in some courses. Why is the engineering student forced to carry such a back-breaking load? The answer is of course fairly obvious. He is irrevocably set apart from the rest of the student body because of the nature of his life's work. He is training for a place in a world where technology is becoming increasingly involved. He must be prepared to do a job now-and not later. Mining and geological engineering require the same essential backgrounds as other engineers, and more. The "more" is a knowledge of mining methods, metallurgy and geology for the mining engineer. The geological engineer must know in addition, mineralogy, petrography, and geophysics. The load is compounded finally by the addition of liberal arts courses. Should anything be done to relieve the situation? Today's engineer must be a whole man, capable of handling the tools of communication and with an understanding of the economics of industry. He must be able to write clear simple English, and he must be man who can think from some other position than bent over a work table. He must be aware of the history of his country and to some extent that of the world. Not all schools share this view. Only two of the accredited schools require history courses. However, five of the non-accredited schools make it mandatory. Four accredited and five of the nonaccredited schools require economics. Courses in mathematics, physics, and chemistry are fundamental in engineer training. The average for the accredited schools could serve as a guide in
Citation
APA:
(1952) Geological Engineering - A Curricular Outcast?MLA: Geological Engineering - A Curricular Outcast?. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1952.