Geology - Drill Core Scanner Proved in Field

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 4
- File Size:
- 351 KB
- Publication Date:
- Jan 1, 1960
Abstract
Soon after the search for uranium ores on the Colorado Plateau began in earnest, thousands of feet of drill core ranging from 1 1/8 to 2 1/8 in. diam became available for study. Although significant advances had been made in the technique of quantitative gamma-ray borehole logging, instrumentation was in the development stage, and complete reliance could not be placed on gamma-ray logs alone to interpret quantitatively the meaning of radioactivity in a drillhole. A method that would be faster than chemical analysis and still give reproducible and reliable results for various drill core sizes was desirable to provide additional information on the enormous footage of drill core being accumulated. A solid phosphor scintillation drill core scanner was designed and constructed. Basically the instrument was developed to measure radiation from a drill core which would not be clearly recorded by a gamma-ray logger using a Geiger tube as the sensitive element. Such data would be beneficial in constructing isorad maps to delineate ore-bearing zones. A calibration in the range 0.01 to 0.1 pct eU.,O, was provided; above 0.1 pct eU3O8 gamma-ray logs were available and were being used to calculate grade and tonnage of ore reserves. The core scanner, however, has been used to estimate equivalent uranium content of ore-grade materials containing as much as 2.2 pct eU3O8 with an accuracy of ± 10 pct, the sample being in the form of a BX drill core. Actually, an apparent calibration of eU3O8 vs counts per unit time is a straight line with a slope that is a function of the sensitive element and the geometry of the counting assembly. A true calibration that will show the expected departure from a straight line is due principally to the random nature of the pulse from a radiation source and the nonlinearity of the electron circuitry. Design and Construction: Three methods of detecting radioactivity were considered and applied in developing the core scanner now in use: 1) the Geiger tube, 2) liquid scintillation phosphors, and 3) solid scintillation phosphors. The desired sensitivity and long-term drift characteristics needed for this operation could be attained only by using solid scintillation phosphors. All three methods are discussed. Before scintillation counters were common, nine beta-gamma sensitive Geiger tubes 7/8 in. diam by 12 in. long were used, arranged to surround the drill core with tube axes parallel to the axis of the core. This arrangement of Geiger tubes was en- closed in a lead shield 1 in. thick, and provision was made to slide a 6-ft length of drill core manually into the counting chamber, one foot at a time. A count for each segment was taken with a scaler while the core remained stationary. The equivalent uranium content of the different sections of drill core could then be estimated with the aid of a calibration curve of counts per unit time vs percent equivalent uranium (eU). In rare cases the effects of the radioactivity concentrated in small areas within the core introduced errors in the readings made with the Geiger tube arrangement owing to the geometry of the measurement. The variability of counting rate due to a localized concentration of radioactivity in a spot in the wall of a drill core is illustrated in Fig. 1. This effect and the inherent low efficiency of the Geiger tube were considered major disadvantages of this counting arrangement. When liquid scintillation phosphors became available the core scanner in Fig. 2 was constructed to make a more accurate measurement of the equivalent uranium content of a sample. This instrument contains about 4 liters of liquid phosphor in a stainless steel coaxial cylinder 1 ft long, with inner and outer walls 0.060 in. and 0.125 in. thick, respectively. Four end-window type photomulti-plier tube with cathodes of 2 in. diam, immersed in the solution at right angles to the axis of the core, were used to observe light flashes in the phosphor. The liquid phosphor offered equal sensitivity to radiation originating at any point in the enclosure and represented geometrically the optimum in design. However, providing a semi-permanent leak-proof seal between the glass envelope of the phototube and the metal walls of the container proved to be a serious problem in constructing the equipment. The most effective seals were especially machined O-rings from sections of large tygon tubing. The tygon took a permanent set owing to cold flow characteristics and in most cases sealed completely. The light absorption characteristics of the liquid phosphor changed gradually with time, and after one month the counting rate had decreased to half the original value. The most sensitive liquid phosphor tested proved to be a solution containing 4 g of 2.5-diphenyloxazole and 0.01 g of 2-(1-naphthy1)-5-phenyloxazole per liter of toluene. With fresh solution in the chamber and with all photomultiplier tubes operating in parallel, the counting rate contributed by any one of the four photomultiplier tubes was about 85 pct of the counting rate from a single tube operated individually. From these observations it was concluded that owing to coincident loss and light attenuation within the liquid phosphor, the apparent sensitivity could not have been materially increased by additional phototubes. However, this approach to core
Citation
APA:
(1960) Geology - Drill Core Scanner Proved in FieldMLA: Geology - Drill Core Scanner Proved in Field. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1960.