Geology - Geology of Toquepala, Peru

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 5
- File Size:
- 1802 KB
- Publication Date:
- Jan 1, 1959
Abstract
TOQUEPALA is a porphyry copper deposit in which mineralization is localized by a large breccia pipe formed in close genetic relation to intrusive rocks. The deposit is in southern Peru, 55 airline miles north of the small city of Tacna and the same distance inland from the port of 110. Quellaveco and Cuajone, geologically similar deposits, lie 12 and 19 miles north of Toquepala. Chuquicamata is 400 miles to the south. The deposit is high on the southwestern slope about 20 miles from the crest of the Cordillera Occidental of the Andes Chain. It lies in a mountainous desert where the steep southwesterly slope of the Andes is dissected by a succession of rapidly downcutting, deep canyons. Local topography is moderately rugged with a dendritic drainage pattern and an elevation of 8000 to 14,000 ft. Volcanic peaks along the crest of the Cordillera rise over 19,000 ft. Local precipitation, including a little snow, amounts to about 10 in. during January and February, but general runoff in the region is slight. Throughout southern Peru the springs and streams are widely separated. Crude canals irrigate small farms on terraced slopes along the streams and provide sparse subsistence to the semi-nomadic inhabitants. During the past decade, engineering and geological explorations of the region, as well as the mineral deposits themselves, have required construction of a network of several hundred miles of roads. Before this, roads extended only a few miles inland. Many areas still can be reached only by trail. Toquepala was briefly described in 19th century geographical literature as a copper deposit, and it received desultory attention from Chilean prospectors early in the present century. It was first recognized as a mineralized zone of possible real importance by geologist O.C. Schmedeman during an exploration trip for Cerro de Paso Copper Corp. in 1937. The discovery was late as compared to earlier recognition of Chuquicamata, Potrerillos, and Braden of Chile and Cerro Verde of southern Peru. This was due partly to the region's difficult accessibility but principally to the obscure character of the outcrop evidence of copper. From 1938 until 1942 Cerro de Pasco Copper Corp. partially explored the deposit by adits and diamond drillholes. This campaign was supplied by a 60-mule pack train continuously shuttling over a 30-mile trail. Northern Peru Mining & Smelting Co., a wholly owned subsidiary of American Smelting & Refining Co., undertook regional engineering stud- ies in 1945 and drill exploration in 1949. According to published data1 the deposit contains 400 million tons of open pit ore averaging a little over 1 pct Cu. It is currently undergoing large-scale development by Southern Peru Copper Corp., which is owned by American Smelting & Refining, Phelps Dodge, Cerro de Pasco, and Newmont Mining. Summary of Geology: The deposit is situated in a terrane composed of Mesozoic(?) and Tertiary volcanic rocks intruded by dioritic apophyses of the Andean Batholith. These formations are exposed in a northwesterly trending belt about 15 miles wide. Along the northeast they are unconformably overlain by Plio-Pleistocene pyroclastic rocks, which occupy much of the crest of the Andes, and along the southwest they are covered by the Moquegua formation of Pliocene(?) age. The mineralized area, oblong in shape and about 2 miles long, has been a locus of intense igneous activity. Several small intrusive bodies having irregular forms occur within and adjacent to a centrally located, large breccia pipe. The mushroom-shaped orebody consists of a flat-lying enriched zone of predominant chalcocite with a stem-like extension of hypogene chalcopyrite ore in depth within and around the pipe. This breccia pipe is relatively large and has been formed by repeated episodes of brecciation. Small satellitic pipes occur at random within a 2-mile radius of this central pipe. These too were individual sourceways of mineralization, although not always of ore grade. Within and around the zone of breccia pipes and mineralization there are a few faults and veins, but these are discontinuous random structures of minor significance. There are no regional or local systems of faults or other planar structures recognized which could account either for the mechanical development of the breccia pipes or for their localization as a group or as individuals. Hydrothermal alteration is pervasive in the zone of mineralization. Clay minerals appear to be abundant in places, but their percentages are undetermined. Quartz and sericite are the principal alteration products, and in many instances original rock textures are obliterated. The principal sulfides, hypogene pyrite and chalcopyrite and supergene chalcocite, occur mainly as vug fillings in the breccia and as small discrete grains scattered through all the altered rocks. Sulfide veinlets are relatively scarce. Sulfides are more abundant and alteration is more intense in certain rock units, such as the diorite and most of the breccias. Although the Toquepala mineral deposit is similar in most respects to the porphyry copper deposits of southwestern U. S., it most closely resembles the Braden deposit of Chile, as described by Lindgren
Citation
APA:
(1959) Geology - Geology of Toquepala, PeruMLA: Geology - Geology of Toquepala, Peru. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1959.