Geology - Oxidation and Enrichment of the Manganese Deposits of Butte, Mont

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 3
- File Size:
- 267 KB
- Publication Date:
- Jan 1, 1957
Abstract
Butte mining district contains extensive manganese vein deposits forming a peripheral zone. Oxidation in the veins studied usually extends to a depth of about 75 ft. Secondary minerals formed by oxidation were found to be ramsdellite—always accompanied by intermixed pyrolusite—and cryptomelane. Enrichment of the gossan is accomplished by reduction of weight upon oxidation; theoretical enrichment is 32.2 pct. Additional enrichment is caused by leaching of soluble minerals, particularly calcium and magnesium carbonates. BUTTE mining district contains extensive manganese vein deposits in the outer zone, surrounding the copper and zinc deposits and corresponding to the well known silver zone. This article describes the mineralogy of the manganese veins, the oxidation and enrichment processes, and the use of this information in prospecting. Information was derived from a study of the Emma, Star West, Tzarena, and Norwich mines, selected as representative of the district. Vein exposures at these mines were mapped, studied, and sampled on the outcrops and throughout the oxidized zone. Specimens were cut and polished for minera-graphic examination, identification, and textural studies. Knowledge of the manganese oxide minerals is scanty, previous information having been rendered obsolete by publication of the first correctly identified list of manganese oxide minerals by Fleischer and Richmond in 1943. Positive identification of the manganese oxides is possible only by X-ray analysis. Identifications for this study were made by the author with a Phillip's Diffractometer at the Montana School of Mines and confirmed by Lester Zeihen of The Anaconda Co., using a Norelco X-ray camera. It was necessiary to re-evaluate some X-ray data, as published patterns of several manganese oxides proved to be of mixtures, mostly showing pyrolusite as a contaminant. Perhaps the most useful information on oxidation and enrichment of manganese is presented in recent books by Goldschmidt1 and Rankama and Sahama.2 While their hypotheses are not conclusively proved, all laboratory and field evidence has served to substantiate them. This information was very useful in this study. Mineralogy: The primary minerals of the manganese veins are chiefly rhodochrosite and quartz. Rhodonite is abundant in the northern part of the district and in places has been found to comprise over a third of the vein matter. A variable but generally small amount of sulfides may be present, principally pyrite and silver minerals. Sphalerite is progressively more abundant near the zinc zone. Rhodochrosite is believed to form complete iso-morphous series with siderite, ankerite, and calcite. Some variation into these compositions is common, and the intermediate forms are termed manganosid-erite, manganankerite, and rnanganocalcite. Much of the rhodochrosite is remarkably pure. Other manganese minerals in the district include huebner-ite, alabandite, and helvite. Ramsdellite (MnO2, orthorhnmbic) is the principal manganese oxide mineral, comprising perhaps two-thirds of the total oxides. It is dull to iron black, and generally massive or platy in structure. A prominent platy cleavage is the only distinguishing megascopic characteristic. Pyrolusite (MnO2, tetragonal) is next most abundant to ramsdellite, with which it is usually intimately mixed. The luster is often brighter or more metallic than in ramsdellite, and needle-like crystals are diagnostic. Pyrolusite is common in small cavities formed by oxidation of pyrite grains. It is relatively abundant in zones of high limonite content. Cryptomelane (KMnO16 tetragonal ?) is rare in the outcrop, but becomes more abundant with depth. At depths of several hundred feet it is the principal oxide. Although its appearance varies, a blue-black flinty luster and blocky to conchoidal fracture are most common. A potassium flame test will identify this mineral. Hardness of all three oxides varies from 2 to 6. The three are quite commonly intermixed, and their textures can vary greatly. The commonest textures are massive or colloform, representative of colloidal deposition, or vuggy and boxwork textures, formed by partial leaching and oxidation in place. A box-work of either ramsdellite or chalcedony is formed after rhodochrosite rhombs and is indicative of ore shoots in this district. Some replacement of both quartz and the granitic wallrock by ramsdellite has been noted, but most of the oxide was deposited as a fissure filling by fine particles. No trace of manganite, hausmannite, braunite, or manganosite was found. No minerals of the psilome-lane group were detected besides cryptomelane. Amorphous MnO, was found at several spots. A specimen of oxide coated with yellow barite crystals was amorphous and not psilomelane (BaMn9O18. 2H2O). Voids formed by the leaching of sphalerite were coated with cryptomelane, not hetaerolite (ZnMn2O4) as might be expected. No manganese sulfate minerals were found in the gossans; however manganese alum (apjohnite ?) has been re-
Citation
APA:
(1957) Geology - Oxidation and Enrichment of the Manganese Deposits of Butte, MontMLA: Geology - Oxidation and Enrichment of the Manganese Deposits of Butte, Mont. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1957.