Geophysics - The Gravity Meter in Underground Prospecting

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 3
- File Size:
- 203 KB
- Publication Date:
- Jan 1, 1957
Abstract
FOR the past six years gravity surveys have been used for underground prospecting in the copper mines at Bisbee, Ariz. The primary purpose of the surveys has been to reduce the diamond drilling and crosscutting necessary for exploration. Since many of the orebodies are small, and geologic control is not always apparent, any information that will direct the drilling and crosscutting is highly desirable. Because of extensive development and exploration work in the copper mines at Bisbee, it has been possible to cover more than 630,000 ft of crosscuts on 30 levels with the gravity surveys. In the process the gravity procedures have been refined to a high degree. Density Contrast: For a gravity survey to be successful, a sufficient density contrast must exist between the geologic feature sought and surrounding host rocks. Most mineralized areas will provide this contrast if fairly massive bodies are present. In the Bisbee area the entire sequence of formations, except for alluvium, appears to have specific gravities ranging from 2.65 to 2.70. These values have been determined by means of a large number of cut samples and diamond drill cores. As a further check, vertical gravity differences have been used where nonmineralized sections are known to occur.' The only known major gravity disturbances result from mineralization that has increased the density and the voids that have decreased density. The voids are caused by mining operations and by underground water movement that has developed several areas of caverns. Equipment: While not absolutely essential, a small rugged gravity meter, such as the Worden meter, is highly desirable. A tall tripod, about the height of a transit tripod, permits instrument set-ups in deep water and in locations where fallen timber and muck piles make it impossible to use a short tripod. An additional advantage of a tall tripod is that it places the meter in the center of the crosscut, reducing the error caused by the crosscut void. Size and weight are important, since the only satisfactory means of operating the meter underground is to carry it by hand. A backpack can be used in rare instances but is usually a hindrance because of the close station spacing. The operator's ability to move through tight clearances will improve survey coverage, as it is then possible to move through raises and caved areas and to pass mine cars and machinery with a minimum of trouble. Station Control: Gravity stations are normally located every 100 ft along the crosscuts, at each intersection, and in the face of all stub crosscuts. In areas of high gravity relief, or where small anomalies might be expected, stations may be located at 25 or 50-ft intervals. When possible, the stations should be offset to avoid effects of raises or other voids. The gravity stations on a level are tied to one or more base stations, which are usually located at the shaft or near the portal of an adit. The base stations may be part of a gravity control net that extends to each level in the mine as well as to the surface. Such a net extending throughout the potential area of the surveys is highly desirable, as it is then possible to compare all gravity stations on a uniform basis. The stations that are part of the base net should be carefully established by multiple readings and, if necessary, by a least squares adjustment of the loops. In some instances where levels do not have a shaft station, or where access may be blocked by caving, it may be necessary to establish secondary bases at the top and bottom of the raises that are between levels. Under fair conditions 70 to 90 gravity stations can be located and run in 6 hr by a two-man crew. The best field procedures depend on conditions. Reduction of Field Data: Most of the time required to produce a final gravity map is consumed in processing the data. Each meter reading must be corrected for a minimum of five factors that affect the gravity value in addition to the density contrast being sought. These factors are 1) instrumental drift, 2) station elevation, 3) topography, 4) latitude, and 5) regional gravity gradient. Mine openings, such as stopes and raises, will affect the value. However, it is seldom practical to make corrections for these voids. Usually a rotation is made on the field note on the station, and any
Citation
APA:
(1957) Geophysics - The Gravity Meter in Underground ProspectingMLA: Geophysics - The Gravity Meter in Underground Prospecting. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1957.