Industrial Minerals - American Potash & Chemical Corp. Main Plant Cycle

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 6
- File Size:
- 516 KB
- Publication Date:
- Jan 1, 1955
Abstract
THE Searles Lake orebody is located in the north- west corner of San Bernardlno County. It is a dry lake bed with an exposed salt surface covering an area of 12 square miles. Recoverable mineral values are contained in the mother liquor below the surface of the lake. Stratification in the lake bed has separated the brine into two bodies which dlffer in composition. Although liquor is processed from both bodies, this paper will discuss only the upper structure brine. Fig. 1 illustrates a typical cross-section of the two commercial orebodies. The orebody is composed of a porous salt deposit 70 to 90 ft deep. The upper structure is separated from the lower orebody by a 12 to 16-ft thick impervious mud seam, as shown in Fig. 1. These salt structures are composed of 55 pct solid-phase salts and 45 pct voids which are filled with the original mother liquor. The brine wells are drilled to the separating mud seam and cased to wlthin 10 ft of the bottom. This is done to draw the brine horizontally from the bottom of the structure. It is pumped with multistage centrifugal pumps Into the plant at the rate of 3 milllon gal per day. The first process that was successful was developed by Charles P. Grimwood for the recovery of potash. The first evaporator unit was built in 1916. In the early twenties, Dr. Morse worked out a process for the recovery of borax. This made the cycle more efficient, as the end liquor could be sent back to the evaporators rather than being sewered. In 1926 the American Potash & Chemical Corp. was formed as a new company, and the entire plant was remodeled. The plant at that time produced only potash, borax, and boric acid. Since then the American Potash & Chemical Corp. has added processes for the production of USP boric acid, refined potash, sulphate of potash, soda ash, salt cake, lithium concentrates, Pyrobor (Na2B4O7) bromine, phosphoric acid, and lithium carbonate. The main plant cycle may be depicted as a closed cycle, see Fig. 2. The raw material, brine, enters the cycle to be mixed with the end liquor, known as ML2, from the pentahydrate borax crystallizers. The mixture of these two forms evaporator feed. Evaporator feed is pumped to the evaporators where it is concentrated, with respect to potash and borax. In the same operation water vapor, sodium chloride, salt trap salt, and clarifier salt are removed from the cycle, see Fig. 3 for potash plant product. The evaporators produce a concentrated liquor which contains approximately 19.5 pct KCI. This liquor is diluted as it enters the potash plant to keep all salts, except potash (KCI, 97.0 pct) in solution. Here the moist potash leaves the cycle at 100°F. The end liquor, known as ML1, is pumped to the borax pentahydrate crystallizers, where crude borax pentahydrate is crystallized and removed as solid phase. The ML2 is sent back to pan feed to be reconcen-trated, see page 207. Note that the only water to leave the cycle is in the form of vapor and moisture in the solid phase products crystallized. Thus there is a constantly cycling volume of liquor to which brine is added. Since the volume of liquor cycled does not increase, the brine is, in effect, evaporated to dryness. This would be true if there were no liquor losses. But, as in all processes, there are always unavoidable and accidental losses which reduce the volume of cycling liquors. The losses must be made up with brine. The concentration process is the beginning and the end of the cycling liquors. In this process there are three evaporator units of the triple effect counter-current type, that is, there are three pans in each unit and the heat flows in one direction while the liquor flows the other way through the evaporator pans, see Fig. 4. During the evaporation process a great deal of sodium chloride, burkeite, some sodium carbonate monohydrate, and a little lithium-sodium phosphate are crystallized. The volume of these salts is so great that they must be removed as they are formed or the process would come to a standstill. Brine and recycled mother liquor No. 2 enter the third effect evaporator pan from the evaporator feed storage tanks, see Fig. 5. A steady flow of liquor is removed from the bottom of the No. 3 pan and is pumped through the No. 3 cone of the salt trap, a clear liquor being returned to the NO. 3 pan. A portion of this clear liquor is pumped to the second effect pan. This process is repeated in each pan. The liquor from the No. 2 pan is pumped through the No. 2 salt trap cone and returned to the No. 2 pan.
Citation
APA:
(1955) Industrial Minerals - American Potash & Chemical Corp. Main Plant CycleMLA: Industrial Minerals - American Potash & Chemical Corp. Main Plant Cycle. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1955.