Industrial Minerals - Improved Methods for Upgrading Clays

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 3
- File Size:
- 805 KB
- Publication Date:
- Jan 1, 1961
Abstract
Prior to this time, ample supplies of high grade mineral fillers, such as clay, have been available close to consuming centers. Now depletion of these accessible deposits, coupled with other factors such as increasing demand due to population expansion and standard of living rise, has made development of upgrading techniques attractive to producers. Various investigations being carried out by the U.S. Bureau of Mines are described. Factors making the development of improved methods for upgrading clays attractive to producers include: depletion of accessible deposits of high-grade clays, rising transportation and labor costs, more exacting specifications, and increased demand resulting from an expanding population and a constantly rising standard of living. Industry recognizes the need for upgrading presently unusable materials and has cooperated with the U.S. Bureau of Mines by providing samples from submarginal deposits and by evaluating the products that USBM upgrades. Following are some examples of recent clay beneficiation work by the Bureau. FIRE CLAY BENEFICIATION At the Rolla Metallurgical Center, Rolla, Mo., the Bureau is conducting research to develop technically and economically feasible mineral-dressing methods to remove quartz, pyrite, and other impurities from submarginal fire clays. The research has been spurred by the growing shortage of high-grade bur-ley, flint, and plastic clays in the Missouri fire-clay district resulting from increased consumption and the low rate of discovery of new deposits of adequate quality. There apparently is ample tonnage of submarginal flint and plastic clays to maintain the industry for many years if such material can be upgraded to commercial quality. Samples have been submitted to USBM by several major producers of refractories, including A. P. Green Fire Brick Co.; Harbison-Walker Refractories Co.; Mexico Refractories Div., Kaiser Aluminum and Chemical Corp.; and Wellsville Fire Brick Co. Research on some samples has been completed and still is in progress on others. The Bureau has found that specimens containing quartz or pyrite in grains coarser than the accompanying clay generally can be upgraded either with a gravity table or hydraulic cyclone. The improvement in quality is notable not only in chemical analysis but in an increase in pyrometric cone equivalent (PCE) of one or more cones. As an example, consider the results attained on a sandy flint—a fine-grained mixture of kaolin and halloysite with quartz and minor quantities of iron and manganese oxides. Chemical analysis was: 35.4 pct alumina (A12O3) and 47.8 pct silica (SiO2). The sample contained 9.2 pct free silica as quartz. The PCE was 33. The sample was crushed to -10-mesh, blunged with water, and then stage-ground to -48-mesh. The ground sample was tabled to yield a clay fraction containing 37.6 pct A12O3, and 45.3 pct SiO2 of which 2.4 pct was free silica. The PCE was 34. Recovery of alumina by this process was 73.6 pct. Concentration of the same clay in the hydraulic cyclone was even more effective in respect to quartz removal. The clay fraction analyzed 38.6 pct A12O3, 45.0 pct SiO2 of which 0.5 pct was free silica as quartz, and had a PCE of 34. Recovery of alumina was 71.9 pct. The hydraulic cyclone was also effective in reducing the pyrite content of a plastic clay which likewise was a mixture of kaolin and halloysite, plus some pyrite, quartz, and carbonaceous material. It analyzed 30.6 pct Al2O3, 52.3 pct SiO2, 2.3 pct Fe2O3, and 0.76 pct S. The sample was blunged and screened through 10-mesh to remove some coarse pyrite, then ground to -65-mesh and cycloned to remove most of the remainder. The final product recovered 81.8 pct of the alumina at a grade of 32.3 pct A12O3, 50.9 pct SiO2, 1.4 pct Fe2O3, and 0.1 pct S. The PCE was 32-1/2, compared with a PCE of 31-1/2 for the crude clay. The fine beneficiated clays, of course, must be pelletized and dried or fired to meet commercial acceptance. This operation has already been solved by industry. Little progress has been made on two remaining problems. One is that of fine-grained impurities, not separable by table or cyclone. Flotation is being investigated to solve this. Although fine pyrite is readily rejected, a satisfactory quartz-clay separation has not been attained. The second problem, a stubborn one, is that of alkali. Samples containing as much as 5 pct potas-
Citation
APA:
(1961) Industrial Minerals - Improved Methods for Upgrading ClaysMLA: Industrial Minerals - Improved Methods for Upgrading Clays. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1961.