Industrial Minerals - Saskatchewan Potash Deposits

The American Institute of Mining, Metallurgical, and Petroleum Engineers
M. A. Goudie
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
5
File Size:
1294 KB
Publication Date:
Jan 1, 1961

Abstract

The deposits occur in a large salt basin of Middle Devonian age. The potash, the final deposit in the salt basin, results from several interrupted cycles of evaporation and dessication. The deposits are extensive, and, at first glance, relatively undisturbed. With more and more wells being drilled, it has now become evident that salt solution has played a large part in changing the original deposits, resulting in some cases in partial to complete removal of the potash and the underlying halite. The most dominant factor in the removal of salt by solution appears to have been tectonic movement and consequent faulting, probably of relatively minor dimensions but of major importance. Evidence which indicates the tilting of the evaporite basin to the north and northwest is shown by the changing pattern of the basin during succeeding eras of potash deposition. The potash minerals of most importance economically are sylvite and carnallite. Reserve calculations indicate that 6.4 billion tons of recoverable high grade potash in K2O equivalent exist in the basin. The Devonian salt basin, which contains the Saskatchewan potash deposits, extends from just east of the foothills in Alberta, north as far as the Peace River area, across Saskatchewan and into Manitoba as far east as Range 10 west of the First Meridian and south into Montana and North Dakota (Fig. 1). The basin is closed everywhere except to the northwest. The known potash deposits are confined almost entirely to the Province of Saskatchewan, with the exception of a small area in western Manitoba bordering the Saskatchewan boundary. The following discussion will concern only the Saskatchewan part of the basin. The evaporite series in the basin is defined as the Prairie Evaporite Formation of the Elk Point Group, of Middle Devonian age. Recent work done by potassium-argon dating methods has indicated an Upper Middle Devonian (Givetian) age of from 285 to 347 million years for the potash. The Elk Point Group consists in ascending order of the Ashern, Winnipegosis, and Prairie Evaporite Formations. The Ashern formation, with an average thickness of 30 ft, sometimes called the Third Red Bed, consists of dolomitic shales and shaly dolomites. The Winnipegosis, is a reef-type dolomite, usually with good porosity, and in many cases oil-staining, although to date no production has been obtained. The thickness varies from 50 to 250 ft. The Prairie Evaporite formation, varying from 0 to 600 ft in thickness, consists of halite with interbedded anhydrite and shale, with considerable amounts of potassium salts in the upper part of the formation. The potassium salts are chiefly chlorides, although very minor occurrences of sulfates have been re- ported. The anhydrite beds do not appear to be continuous, although generally one or two bands of anhydrite underlie the lowest potash zone and are used as marker horizons. The shale occurs as seams interbedded with the salts, as large irregular inclusions in the salts and as very fine particles in intimate mixture with the salts. The Prairie Evaporite Formation is overlain by the Second Red Bed member, the Dawson Bay Formation and the First Red Bed Member of the Manitoba Group, listed in ascending order. The Red Beds are shales which vary in color from red to green, maroon, grey, grey-black, and reddish purples. They serve as marker horizons for coring the potash. The Second Red Bed averages 14 ft in thickness, the First Red Bed 35 ft. The Dawson Bay Formation, which everywhere overlies the First Red Bed and the Prairie Evaporite Formation in the area under discussion, is a reef type of carbonate, in some places limestone, in others limestone and dolomite, with vugular to pinpoint porosity averaging 130 ft in thickness. In some parts of the area, it has a salt section near the top of the formation, usually with interbedded shales and limestones. In other parts of the area, it is waterbearing and the salt is absent. Detailed mapping has indicated that the areas in which the Dawson Bay is water-bearing are areas which have been disturbed by faulting. Where the Dawson Bay is salt-bearing, the porosity has been plugged by salt. The total thickness of the salt varies from between 600 to 700 ft in the center of the basin to zero at the northern edge of the basin (Fig. 2).* The salt-free area in the center of the Province is believed to have resulted from removal of salt by solution. Evidence from several wells suggests that salt removal has been a continuing process from the time of deposition to the present day. One well drilled between the Quill Lakes for potash information encountered
Citation

APA: M. A. Goudie  (1961)  Industrial Minerals - Saskatchewan Potash Deposits

MLA: M. A. Goudie Industrial Minerals - Saskatchewan Potash Deposits. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1961.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account