Industrial Minerals - Texas White Firing Bentonite

The American Institute of Mining, Metallurgical, and Petroleum Engineers
Forrest K. Pence
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
6
File Size:
552 KB
Publication Date:
Jan 1, 1950

Abstract

Bentonite deposits are known to occur in Texas within the Jackson group of formations. This group represents the uppermost Eocene age sediments found in the coastal plain area of Texas. It outcrops across this area of the state in a narrow band of some 4 to 20 miles width. The outcrop pattern roughly parallels the present Gulf of Mexico shore line and is some 100 miles inland from the Texas shore, Fig 1. The principal bentonite deposits are found in the areas where this outcrop pattern cuts across the south-central Texas counties of Karnes, Gonzales, and Fayette. In these deposits, the better quality bentonite is found in the lower or bottom layers of the volcanic ash deposits in which they occur. Some of these better quality benton-ite~ develop very light colors upon firing and therefore justify their being classified as "white firing." The deposits in Karnes and Gonzales Counties apparently occur in commercial quantity, whereas the white firing strata so far uncovered in Fayette County have been too thin to be classified as yet as "commercial." A study of the ceramic properties of the weathered ash in Gonzales and Karnes Counties was reported in 1941.' Commercial development of the deposit in Gonzales County, 7 miles east of Gonzales, Texas. was started earlier by the Max B. Miller Co. for the purpose of marketing the material as a bleaching clay, and this operation has developed to very sizable proportions. In recent years, this company has offered a specially selected grade of the Gonzales material as a suspending agent in glaze slips. The white firing property especially adapts the material to use in white cover coat enamels. The strata in the deposit are practically horizontal and consist from top to bottom of approximately 2 ft of soil overburden, 10 ft of brown bentonite, 2 ft of coarse white bentonite, and 4 ft of waxy white bentonite overlying a he grained sandstone. The & being made in the quarry is approximately one-half mile in length. Only the bottom 4 ft of waxy bentonite is being recovered, the upper layers being stripped and wasted, Fig 2. It may appear somewhat surprising that the very bottom strata appears to have been the one most completely altered. To confirm this, samples from top to bottom of the various strata were studied microscopically by R. F. Shurtz. Professor of Ceramic Engineering, University of Texas. His interpretation is to the effect that the lower part of the seam was deposited at a much earlier date than the top, and that the lower part was chemically altered to a considerable extent before the upper part of the seam was laid down. The conclusion to be derived from these examinations may be stated briefly to he that the alteration in these strata or parts of strata has proceeded independently of the alteration in other parts of the strata during a considerable geological period. The presence of gypsum and iron stain throughout all of the strata indicates that alteration is now proceeding more or less uniformly throughout. It is contended that the alteration of the original ash to montmorillonite is not a result of the presently operating processes. A deposit which occurs approximately 7 miles southeast of Falls City and just south of the village of Casta-howa, has been explored and leased by J. R. Martin, of San Antonio. Mr. Martin has conducted mining and marketing operations in bentonite for a period of many years and asserts that the white firing strata found in this deposit occurs in commercial quantities. His pit, which is shown in Fig 3, exposes 2 ft of soil overburden, approximately 5 ft of white bentonite having coarse texture, and approximately 5 ft of waxy white bentonite which in turn overlies a brown sandy clay. Here, as in the Gonzales deposit, the most completely altered portion is found at the bottom of the seam, as per following report of microscopic examination by Mr. Shurtz. Sample No. 1: This sample was taken from the top stratum which is one foot thick. It is grayish in color and it contains visible fossilized plants. The color is probably the result of fine carbonaceous material in the rock. Under the microscope the sample is seen to consist of glass and feldspar; the amount of glass predominating. Both these substances are slightly altered. No montmorillonite or other clay mineral can be identified definitely; however, the products of the slight alteration mentioned are probably montmorillonite or mineral gel. Sample No. 2: This sample was taken from the stratum second from the top. This stratum is fourteen inches thick. The sample is light gray. It shows numerous veinlets of greenish translucent material ranging from one-eighth inches wide down to the limit of visibility with the unaided eye. It has the smooth, sub-conchoidal fracture characteristic of some bentonites. Microscopically the sample consists mainly of aggregates of clay minerals. The birefringence of the aggregates is lower than would be expected if the
Citation

APA: Forrest K. Pence  (1950)  Industrial Minerals - Texas White Firing Bentonite

MLA: Forrest K. Pence Industrial Minerals - Texas White Firing Bentonite. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1950.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account