Institute of Metals Division - A Constitution Diagram for the Molybdenum-Iridium System

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 7
- File Size:
- 1336 KB
- Publication Date:
- Jan 1, 1963
Abstract
A constitution diagram for the system Mo-Ir has been determined. The maximum solubility of iridium in molybdenum is 16 at. pct at 2110ºC and decreases to less than 5 at. pct at 1500°C. The solubility of molybdenum in iridium is 22 at. pct. Three intermediate phases appear in the system: 8 MoJr, having the p-tungsten structure; a phase, a cornplex tetragonal structure; and the hcp ? phase. Metallography, melting point determinations, X-ray diffraction and fluorescence, and electron micro-probe unalyses were employed in establishing the diagram. PREVIOUS to the present investigation, the intermediate phases in the Mo-Ir system were identified, but no detailed account of the phase diagram has been reported in the literature. Raub1 investigated alloys of Mo-Ir over an extensive range of composition between the temperatures of 800º and 1600°C. The in-termetallic compound MosIr was found to exist with nearly pure molybdenum, as the solubility of iridium in molybdenum was not detectable parametrically in this temperature range. MO3Ir was found to be iso-morphic with a ß-tungsten type structure, having a parameter of 4.959Å. An intermediate hcp phase, designated as the ? phase, ranged in composition from 52 to 78.5 at. pct at 800ºC, and from 41 to 78.5 at. pct Ir at 1200°C. Parameters noted for the ? phase were as follows: at 42.7 at. pct Ir, a = 2.771i0, c = 4.4366, c/a = 1.601; at 78.5 at. pct Ir, a = 2.736A, c = 4.378A, c/a = 1.600. Molybdenum was found to be soluble in iridium up to 16.5 at. pct Mo (83.5 at. pct Irj, with the parameter of iridium increasing to 3.845A at the solubility limit. Knapton,2 who investigated alloys between 15 and 85 at. pct Ir, essentially agreed with Raub's data, but, in addition, found a a phase in as-melted alloys near 25 at. pcto Ir. The oaphase lattice parameters were a = 9.64Å, c = 4.96Å, c/a = 0.515. The a phase was replaced by the 8 -tungsten phase on annealing at 1600°C. Knapton concluded that the a was stable only at elevated temperatures, and placed the composition of the a phase at approximately 30 at. pct Ir. The intermetallic compound Mo3Ir, with a lattice parameter of 4.965A, was included among the 8-tungsten structures reported by ~eller.' Matthias and Corenzwit,4 and Bucke15 studied the superconducting nature of MosIr, and reported a superconducting transition temperature of 8.$K. The present investigation describes the phase relationships in the Mo-Ir alloy system determined by melting point measurements, X-ray diffraction and fluorescence, and metallography. EXPERIMENTAL PROCEDURES Alloys for the determination of the phase diagram were prepared from powders. Commercial 99.9 pct Mo from Fansteel Metallurgical Corp. and 99.9 pct Ir powder from J. Bishop and Co. Platinum Works were used. The powders were weighed to nominal compositions, mixed, and then pressed, without binder, into compacts weighing 4 to 6 g. These were presintered in uacuo between 1200' and 1400°C for 1 hr, to reduce the degree of spattering during subsequent arc-melting. The compacts were arc-melted in a nonconsumable tungsten electrode furnace six times on alternate sides on a water-cooled copper hearth in an atmosphere of zirconium-getter ed argon at 500 mm of mercury pressure. In almost all cases, this procedure yielded buttons of satisfactory homogeneity. The composition of all melted buttons were confirmed by X-ray fluorescent analysis using the experimentally determined ratio of the iridium La1 line intensity to that of the molybdenum Ka1 line as a function of composition. In this determination four alloys analyzed by wet chemical methods were used as standards. An uncertainty range of ±1 at. pct has been attributed to all indicated compositions. All heat treatments and solidus measurements were carried out in tantalum resistance heating elements in vacuum conditions of 10-4 to 10-5 mm of mercury. A detailed account of this procedure has been reported by Schwarzkopf and Brophy.8 In the heat treatment and solidus measurements of iridium-rich alloys (50 at. pct Ir or greater), a tungsten lining was inserted into the tantalum resistance heating element because of a eutectic reaction which occurs between iridium and tantalum at 1948ºc.7 Heat treatments and solidus measurements carried out at compositions less than 40 at. pct Ir both with and without tungsten linings within the resistance
Citation
APA:
(1963) Institute of Metals Division - A Constitution Diagram for the Molybdenum-Iridium SystemMLA: Institute of Metals Division - A Constitution Diagram for the Molybdenum-Iridium System. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1963.